Abstract:
A radiation type oscillator including a radiation type oscillator substrate including a microwave transistor for generating negative resistance by short-duration operation and a resonant cavity structure; a high-frequency pulse signal of an oscillation frequency/frequency bandwidth determined by negative resistance produced by the short-duration operation of the microwave transistor and the resonant cavity structure is generated as a transmitted RF signal and simultaneously radiated into space. The radiation type oscillator performs oscillating operation when a received RF signal that is a reflected wave of the transmitted RF signal from an object of detection enters the radiation type oscillator, an IF signal is acquired from an IF signal output terminal owing to homodyne mixing by the radiation type oscillator itself, and this is analyzed and processed to detect the object of detection.
Abstract:
An apparatus includes an extendable wand, and a sensor head coupled to the wand. The sensor head includes a continuous wave metal detector (CWMD) and a radar. When the wand is collapsed, the wand and the sensor head collapse to fill a volume that is smaller than a volume filled by the sensor head and the wand when the wand is extended. Frequency-domain data from a sensor configured to sense a region is accessed, the frequency-domain data is transformed to generate a time-domain representation of the region, a first model is determined based on the accessed frequency-domain data, a second model is determined based on the generated time-domain representation, the second model being associated with a particular region within the sensed region, and a background model that represents a background of the region is determined based on the first model and the second model.
Abstract:
An iterative method for modifying an initial time signal to form a created signal having a prescribed envelope, and frequency notches at prescribed frequency values, wherein the created signal closely resembles the initial time signal, the envelope of the created time signal is the prescribed envelope, and the Fourier magnitude of the created time signal at the prescribed frequency values is nearly zero. The created time signal may be a real-valued signal as well as a complex-valued time signal which closely resembles an arbitrary initial time signal, including initial time signals which are standard transmit signals for radar systems, and which have Fourier transform magnitudes with notches and stop-bands at prescribed frequency values. These notches and stop bands are created by enforcing nulls of prescribed order at the prescribed frequency values within the modified time signal.
Abstract:
A small unmanned aerial system (sUAS) is used for aerial and on the ground surveillance while an operator of the sUAS, or other personnel, remain at a safe distance. The sUAS system can perform an autonomous landing and can be operated at an extended, e.g., greater than 100 meters, standoff from the detection apparatus and potential harm. The sUAS may be implemented as an easy-to-operate, small vertical take-off and landing (VTOL) aircraft with a set of optical, thermal, and chemical detection modules for performing aerial surveillance and ground surveillance after landing.
Abstract:
Apparatus for monitoring vital signs of one or more living subjects comprises a monitoring station and at least one sensor in communication with the monitoring station. The sensor comprises an antenna system, an ultra wideband radar system coupled to the antenna system, a signal processor and a communication system. The signal processor is connected to receive a signal from the ultra wideband radar system and configured to extract from the signal information about one or more vital signs of a person or animal in a sensing volume corresponding to the antenna system. The communication system is configured to transmit the information to the monitoring station.
Abstract:
A method for detecting the motion of object by ultra-wideband radar imaging and system thereof to be used to present the motion of object in a reference gray-level image by using the delay time to analyze the distance between the detected position of object and the detecting position to compare the time-varying distance variation between the reference distance and the detecting distance. The system includes a transmitter module, a receiver module and a signal processing module. The transmitter module is used to transmit a first ultra-wideband signal from a detecting position to the object. The receiver module is used to receive a second ultra-wideband signal reflected from the object in the detecting position. The signal processing module is used to analyze the signal delay time of the second ultra-wideband signal received in the detecting position to analyze the detecting distance between the second ultra-wideband signal and the detecting position.
Abstract:
A surveillance system includes a multi-propeller aircraft having a main propeller and a plurality of wing unit propellers; a housing that houses the main propeller and the wing unit propellers; an optical video camera; an ultra-wideband (UWB) radar imaging system; a control system for controlling flight of the multi-propeller aircraft from a remote location; and a telemetry system for providing information from the optical camera and the ultra-wideband (UWB) radar imaging system to a remote location.
Abstract:
The burst oscillation device 20 includes the data generation part 21, the operation part 11, the signal selecting part 40 and the burst generation part 50. The generation part 21 outputs the encoded data encoded based on data for communication. At the signal selecting part 40, the pulse release timing of predetermined repetition period is randomly delayed by the PPM and further delayed randomly by the minimal time by means of the PSK modulation, thereby realizing the decreasing of the peak value of the average power spectral density.
Abstract:
Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.
Abstract:
A pulse generator with a filter section limiting a band of an input signal, and a pulse generating section generating a plurality of pulses which are sequentially delayed one after another by a time period (τ) substantially equal to a reciprocal of a center frequency of the band of the filter section, and inputting the plurality of pulses to the filter section.