Abstract:
A support structure is provided that enables the use of high-voltage phosphors in field-emission flat panel displays, to maintain the vacuum gap between the cathode and the anode at a constant distance and to prevent distortion of the transparent view screen and backing plate of the display. A number of independent techniques each contributes to the solution of the problem of secondary electron emission. One technique is to alter the geometry of the triple junction of the support structure, the cathode, and the vacuum gap, thereby reducing the electrostatic field created at the triple junction. Reducing the electrostatic field reduces the initial primary electron bombardment originating at the triple junction. Altering the geometry of the support surface with respect to the field lines present at the triple junction also increases the probability that impinging electrons will impact at or nearly at right angles, and will also tend to be directed by the field lines back into the "pocket" created by the shaping of the support structure edge, preventing secondary electrons from escaping and traveling along the structure surface to the anode. In accordance with another technique, the support structure is fluted so as to reduce the average coefficient of secondary electron emission, to trap a proportion of secondary electrons, and to limit the number of hops of other secondary electrons. In another technique, a high resistivity conductive layer is formed at the triple junction in order to reduce the field potential at the triple junction. A similar conductive layer may be formed at the opposite junction of the support structure, the anode, and the vacuum gap. A high resistivity conductive material coated on the surface of the insulating spacer can be used to decrease the charge relaxation time of the insulator, thereby maintaining a constant field potential over the surface of the insulator, reducing areas of high field potential which will tend to accelerate secondary electron emissions. In accordance with other techniques, the support structure is made of a non-porous material and may be coated with a coating having low secondary emission characteristics.
Abstract:
Gated electron emitters are fabricated by processes in which charged particles are passed through a track layer (24, 48, or 144) to form charged-particle tracks (26.sub.1, 50.sub.1, or 146.sub.1). The track layer is etched along the tracks to create open spaces (28.sub.1, 52.sub.1, or 148.sub.1). Electron-emissive elements (30 or 142D) can then be formed at locations respectively centered on the open spaces after which a patterned gate layer (34B, 40B, or 158C) is provided. Alternatively, the open spaces in the track layer can be employed to etch corresponding apertures (54.sub.1) through an underlying non-insulating layer (46) which typically serves as the gate layer. An etch is performed through the apertures to form dielectric open spaces (56.sub.1, 96.sub.1, or 114.sub.1) in an insulating layer (24) that lies below the non-insulating layer. Electron-emissive elements (30B, 30/88D.sub.1, 98/102.sub.1, or 118.sub.1) can subsequently be provided, typically in the dielectric open spaces.
Abstract:
A cold cathode electron source element having a cold cathode on a substrate. The cold cathode has dispersed in a cold cathode base particles of a conductive material having a lower work function than the base and a particle size which is sufficiently smaller than the thickness of the cold cathode. The element can be driven with a low voltage to induce high emission current in a stable manner. The cold cathode is easily processable. The element can have an increased surface area.
Abstract:
A pixel emission current limiting resistance is realized by forming a stack of alternately doped amorphous or polycrystalline silicon layers over the cathodic conductors of a FED driving matrix. The stack of amorphous or polycrystalline silicon layers doped alternately n and p provides at least a reversely biased n/p junction having a leakage current that matches the required level of pixel emission current. The reversely biased junction constitutes a nonlinear series resistance that is quite effective in limiting the emission current through any one of the microtips that form an individually excitable pixel and which are formed on the uppermost layer of the stack.
Abstract:
Gated electron emitters are fabricated by processes in which charged particles are passed through a track layer (24, 48, or 144) to form charged-particle tracks (26.sub.1, 50.sub.1, or 146.sub.1). The track layer is etched along the tracks to create open spaces (28.sub.1, 52.sub.1, or 148.sub.1). Electron-emissive elements (30 or 142D) can then be formed at locations respectively centered on the open spaces after which a patterned gate layer (34B, 40B, or 158C) is provided. Alternatively, the open spaces in the track layer can be employed to etch corresponding apertures (54.sub.1) through an underlying non-insulating layer (46) which typically serves as the gate layer. An etch is performed through the apertures to form dielectric open spaces (56.sub.1, 96.sub.1, or 114.sub.1) in an insulating layer (24) that lies below the non-insulating layer. Electron-emissive elements (30B, 30/88D.sub.1, 98/102.sub.1, or 118.sub.1) can subsequently be provided, typically in the dielectric open spaces.
Abstract:
An electron emission cathode includes: an n-type semiconductor film including diamond particles partially projecting from a surface of the n-type semiconductor film; and an anode opposing the n-type semiconductor film with a vacuum interposed therebetween. Electrons are emitted by applying a voltage between the anode and the n-type semiconductor film.
Abstract:
A cold cathode electron source element having a cold cathode on a substrate. The cold cathode has dispersed in a cold cathode base particles of a conductive material having a lower work function than the base and a particle size which is sufficiently smaller than the thickness of the cold cathode. The element can be driven with a low voltage to induce high emission current in a stable manner. The cold cathode is easily processable. The element can have an increased surface area.
Abstract:
A flat panel image sensor is provided by combining the photoconductive imaging electrode of a vidicon with a two dimensional array of cold cathode field emitters commonly used for flat panel Field Emission Display (FED) systems. The FED operates normally to emit electrons which are accelerated in prior art displays towards a luminescent phosphor to generate light output proportional to the cathode emission. Rather than accelerating towards a phosphor, electrons, in accordance with the principles of this invention, are accelerated towards a photoconductor layer to replace charge removed from the layer by an incident radiation pattern directed at the photoconductor layer through a layer of transparant, electrically-conducting material which serves as a radiation window. A large area, low cost, small, flat panel sensor is realized. The transparant, electrically-conducting layer may be partitioned to reduce stray capacitance for large area sensors and the partitioned, electrically-conducting layer permits a parallel readout mode of operation. The sensor includes a means for collimating and focusing the electron beams and may be used with infra red and ultra violet photoconductor materials.
Abstract:
Electron excited luminous element capable of ensuring satisfactory emission characteristics of emitters for an extended period of time. A hydrophobic insulating film is formed on a glass anode substrate so as to cover an exposed portion thereof between anode electrodes. This keeps the glass anode substrate from being directly attacked by electrons, to thereby prevent decomposition of water and the like contained in a surface of the glass, resulting in oxygen which causes deterioration in emission characteristics of emitter cones being kept from being released from the glass.
Abstract:
Described are methods for making, and resultant structures of, a field emission display with soft luminescence and a comfortable image for a viewer of the display. The field emission display is formed with a baseplate and an opposing face plate. Field emission microtips are formed in openings in a conductive and insulating layer on the baseplate. An anode is formed on either the faceplate, or on the conductive layer surrounding each opening. Phosphorescent material is formed over the anode. A blocking layer is formed between the phosphor and the faceplate, such that during operation of the display direct light emission from the phosphor is blocked, resulting in indirect phosphorescence and a more comfortable display image. An optional reflective layer may be added over the conductive layer to increase phosphorescence.