Abstract:
An optical pumping module for a laser including an amplifying medium forming a bar with a circular base, at least one light source for optical pumping of the amplifying medium, and a reflector that surrounds the amplifying medium to send the light, along several passes, towards the amplifying medium and forming a cylinder with a polygonal base. The light source is placed in front of one edge of this cylinder on the opposite side of this edge from the amplifying medium. The optical pumping module may be particularly applicable to laser cutting and welding.
Abstract:
A laser device which may be used as an oscillator or amplifier comprising a chamber having a volume formed therein and a gain medium within the volume. The gain medium comprises solid-state elements containing active laser ion distributed within the volume. A cooling fluid flows about the solid-state elements and a semiconductor laser diode provides optical pump radiation into the volume of the laser chamber such that laser emission from the device passes through the gain medium and the fluid. The laser device provides the advantages of a solid-state gain medium laser (e.g., diode-pumping, high power density, etc), but enables operation at higher average power and beam quality than would be achievable from a pure solid-state medium.
Abstract:
According to the invention, a high power diode pumped solid state laser is provided. The laser includes a first and second reflective surfaces which form an optical resonator cavity. A laser medium, particularly a Nd doped laser medium for example: a Nd:YAG, a Nd:YLF, or a Nd:YVO4 crystal is provided within the laser cavity. A fundamental frequency laser beam propagates from the front and back ends of the laser medium. The first reflective surface is highly reflective for fundamental beam. The second reflective surface is at least partially reflective for fundamental beam. The laser medium is end pumped by at least one diode pumping apparatus for example, a laser diode, or diode array, or fiber coupled laser diodes, whose wavelength matches at least one laser medium absorption band. The diode pumping apparatus is located adjacent either the front end or the back end of the laser medium, or both. The optical resonator cavity is configured to provide a laser beam diameter in the laser medium from about 0.8 mm to 2 mm in diameter for the fundamental beam. Desirably, the laser medium has a diameter of about 1.6 to 5 times the fundamental beam diameter in the laser medium. A cooling jacket is desirably provided surrounding the laser medium so that the laser medium is directly liquid cooled. Desirably, the resonator cavity is also configured so that the fundamental beam is operated at TEM00 mode. Preferably, a polarization discriminator for example, a polarizer or one or more Brewster plate is located within the resonator cavity to discriminate one polarization over the other in favor of a particular polarization.
Abstract:
A process of making a laser diode device includes these steps: applying a bonding layer such as molybdenum manganese to surfaces of first and second bodies of dielectric material such as beryllium oxide; joining the first and second bodies together to form a cavity; and bonding a sectored conductor ring to the bonding layer within the cavity. The laser diode device made by the process includes a body of dielectric material such as beryllium oxide forming a cavity; a bonding layer lining the cavity; a conductor bonded to the layer within the cavity; the conductor being divided into ring sectors separated by radial diode bar spaces; and a laser diode bar in each of the bar spaces forming an array of such laser diode bars. The ring sectors and laser diode bars together form a series path for electric current around the conductor to energize the laser diode bars.
Abstract:
A method and system provide improved surface cooling of a laser gain medium such as a solid state disc through the presence of a layer of a highly conductive liquid separating the solid state disc from a heat sink of the system. The highly conductive liquid, such as, for example, mercury, is placed to serve as a conductor of heat between the disc and the heat sink. Liquid allows for good thermal contact between the heat sink and the disc reducing the problem of thermal contact resistance found when more solid means of contact are used.
Abstract:
According to the invention, a high power diode pumped solid state laser is provided. The laser includes a first and second reflective surfaces which form an optical resonator cavity. A laser medium, particularly a Nd doped laser medium for example: a Nd:YAG, a Nd:YLF, or a Nd:YVO4 crystal is provided within the laser cavity. A fundamental frequency laser beam propagates from the front and back ends of the laser medium. The first reflective surface is highly reflective for fundamental beam. The second reflective surface is at least partially reflective for fundamental beam. The laser medium is end pumped by at least one diode pumping apparatus for example, a laser diode, or diode array, or fiber coupled laser diodes, whose wavelength matches at least one laser medium absorption band. The diode pumping apparatus is located adjacent either the front end or the back end of the laser medium, or both. The optical resonator cavity is configured to provide a laser beam diameter in the laser medium from about 0.8 mm to 2 mm in diameter for the fundamental beam. Desirably, the laser medium has a diameter of about 1.6 to 5 times the fundamental beam diameter in the laser medium. A cooling jacket is desirably provided surrounding the laser medium so that the laser medium is directly liquid cooled. Desirably, the resonator cavity is also configured so that the fundamental beam is operated at TEM00 mode. Preferably, a polarization discriminator for example, a polarizer or one or more Brewster plate is located within the resonator cavity to discriminate one polarization over the other in favor of a particular polarization.
Abstract:
A laser treatment apparatus for performing treatments on an affected part by irradiating the affected part with a laser beam for treatment is disclosed. This apparatus includes a laser oscillator, a cooling unit including a fan which cools the laser oscillator, a temperature sensor which directly or indirectly detects a temperature of the laser oscillator, and a control unit which drives the fan at roughly constant low speed when a detected temperature by the temperature sensor is below a predetermined reference value and at roughly constant high speed when the detected temperature is the predetermined reference value or more.
Abstract:
A passively cooled solid-state laser system for producing high-output power is set forth. The system includes an optics bench assembly containing a laser head assembly which generates a high-power laser beam. A laser medium heat sink assembly is positioned in thermal communication with the laser medium for conductively dissipating waste heat and controlling the temperature of the laser medium. A diode array heat sink assembly is positioned in thermal communication with the laser diode array assembly for conductively dissipating waste heat and controlling the temperature of the laser diode array assembly. The heat sink assemblies include heat exchangers with extending surfaces in intimate contact with phase change material. When the laser system is operating, the phase change material transitions from solid to liquid phase. This transition of the phase change material also provides a thermal buffer for laser components such that the phase change material absorbs the energy associated with fluctuations in ambient temperature before transferring it to the laser component. Also, the heat sink assembly can contain more than one type of phase change material, each having a different melting temperature.
Abstract:
A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.
Abstract:
A gain medium assembly for a laser system that has or attaches to a cooling fluid source. The gain medium assembly includes a laser system gain medium, an insulating jacket disposed around the gain medium, a cooling jacket disposed around the insulating jacket, and an energy source for optically exciting and heating the gain medium. The cooling jacket defines a cooling channel between itself and the insulating jacket for guiding flowing cooling fluid from the cooling fluid source over the insulating jacket. During operation, the heat in the gain medium dissipates through the insulating jacket and to the cooling fluid in the cooling channel, while the gain medium is maintained at a temperature that is significantly higher than the temperature of the cooling fluid. A gap may be formed between the gain medium and the insulating jacket to allow some of the cooling water to fill the gap and form a thin layer of water, and to provide uniform heat conduction, between the gain medium and the insulating jacket.