摘要:
This invention relates to a semiconductor laser device including a semiconductor laser element with an exit surface from which laser radiation can emerge, a collimating lens means which can reduce the divergence of the laser radiation emerging from the exit surface at least with respect to the first direction (Y) which is essentially perpendicular to the exit direction (Z) of the laser radiation the semiconductor laser device furthermore including an auxiliary body which is permanently connected both to the semiconductor laser element and also to the collimating lens means. Furthermore, this invention relates to a semiconductor laser module of a semiconductor laser element, an auxiliary body and a collimating lens means and a process for producing the semiconductor laser means.
摘要:
A laser gain device (10) holds a laser slab (60) which is pumped by pump energy from at least one diode array assembly (24). An angle at which pump energy from the diode array assembly (24) impinges the laser slab (60) is adjustable via angle adjustment means. The laser slab (60) is mounted between edge bars (62, 64) which have laser slab spacers (84) extending therethrough, allowing laser slabs (60) of different widths to be mounted within the laser gain device (10). One or more pump energy shields (88, 90) are used to control the amount of pump energy entering the laser slab (60), and cooling liquid conduits (100) are provided throughout components of the laser gain device (10), serving to conductively cool a heat shield (12).
摘要:
A solid-state laser rod pumping module comprises a stack-type semiconductor laser including a plurality of bar-shaped (or rectangular) components that are stacked in a direction parallel to the axis of a solid-state laser rod, each of the plurality of bar-shaped components including a plurality of laser-light-emitting portions that are aligned and integrated in a direction orthogonal to the axis of the solid-state laser rod. The stack-type semiconductor laser has a large divergence angle in a longitudinal parallel to the axis of the solid-state laser rod. The pumping module further includes a semiconductor laser light focusing component for focusing laser light emitted out of the stack-type semiconductor laser, and a semiconductor laser light guiding component disposed in a diffusive reflection tube, for guiding the laser light focused and injected thereinto by the semiconductor laser light focusing component to an end portion thereof while substantially maintaining the length of one side of a cross section of the semiconductor laser light, which is running in a direction parallel to the direction in which the plurality of bar-shaped components are stacked, and for guiding the laser light toward the solid-state laser rod located within the diffusive reflection tube.
摘要:
A solid state laser module for amplification of laser radiation. The module includes a laser gain medium having a pair of generally parallel surfaces that form a disc-like shape, that receive and transmit laser radiation. At least one undoped optical medium is disposed adjacent a peripheral edge of the laser gain medium and in optical communication therewith. A source of optical pump radiation directs optical pump radiation into the undoped optical medium generally normal to the parallel surfaces and the undoped optical medium transports the optical pump radiation into the laser gain medium to pump the laser gain medium to a laser transition level. Alternative embodiments include arrangements for directing cooling fluids between adjacently disposed laser gain media.
摘要:
A laser includes an Nd:YVO4 crystal end-pumped with diode-laser light having a wavelength at which the absorption coefficient for Nd:YVO4 is less than about 0.35 (35%) of the absorption coefficient at 808 nm.
摘要:
An optical system includes a diode pump source and a thin disk gain media. The thin disk gain media has first and second surfaces and is made of a material with an anisotropic thermal expansion. At least one of the first and second surfaces is a cooling surface. The thin disk gain media is cut at an angle to provide substantially the same thermal expansion coefficient in all directions lying in a plane that is parallel to the cooling surface. An optical coupler is positioned between the diode pump source and the thin disk gain media to direct an output from the diode pump source to the thin disk gain media.
摘要:
The invention relates to an optically pumped semiconductor laser device having a substrate (1) having a first main area (2) and a second main area (3), at least one pump laser (11) being arranged on the first main area (2). The semiconductor laser device comprises a vertically emitting laser (4) having a resonator having a first mirror (9) and a second mirror (20), said laser being optically pumped by the pump laser (11), the first mirror (9) being arranged on the side of the first main area (2) and the second mirror (20) being arranged on the side of the second main area (3) of the substrate (1).
摘要:
The present invention relates to a solid-state laser comprising: a) a semiconductor pump laser, b) a lens integrated on the surface of said semiconductor pump laser, c) a packaging material consisting essentially of a spin-on glass material, wherein the spin-on glass material is processable at a process temperature of less than 225null C., and d) a lasing material layer having a highly reflective coating in both sides. The invention also relates to a process for producing such a solid-state laser, which process comprises applying spin-on glass material onto semiconductor wafers having VCSEL pump lasers using different coating methods, such as spin coating, and curing the glass film layer at temperatures
摘要:
Methods and systems for laser-based processing of materials are disclosed wherein a scalable laser architecture, based on planar waveguide technology, provides for pulsed laser micromachining applications while supporting higher average power applications like laser welding and cutting. Various embodiments relate to improvements in planar waveguide technology which provide for stable operation at high powers with a reduction in spurious outputs and thermal effects. At least one embodiment provides for micromachining with pulsewidths in the range of femtoseconds to nanoseconds. In another embodiment, 100W or greater average output power operation is provided for with a diode-pumped, planar waveguide architecture.