Abstract:
A system includes a laser system having a master oscillator and a planar waveguide (PWG) amplifier having one or more laser diode pump arrays, a pumphead, input optics, and output optics. The system also includes an optical bench and cooling manifold coupled to the pumphead. The optical bench and cooling manifold is configured to provide coolant to the one or more laser diode pump arrays and the pumphead through the optical bench and cooling manifold. The optical bench and cooling manifold is also configured to partially deform during operation of the laser system. A housing of the pumphead is coupled to the input and output optics to maintain optical alignment of the pumphead with the input and output optics.
Abstract:
A laser apparatus able to prevent the formation of condensation at the time of maintenance work. The laser apparatus includes a housing having an openable sealed structure, an optical system set inside the housing, a temperature regulation mechanism maintaining the optical system at a predetermined temperature, and a preparatory step controller controlling a preparatory step performed before opening the housing. The temperature regulation mechanism is configured to maintain the optical system at a first temperature during operation of the laser apparatus and to maintain the optical system at a second temperature of the first temperature or more when the preparatory step is started.
Abstract:
A tunable narrow-linewidth single-frequency linear-polarization laser device comprising a heat sink, a pumping source packaged on the heat sink, a first and second collimating lenses, a laser back cavity mirror, a thermal optical tunable filter, a rare-earth-ion heavily-doped multicomponent glass optical fiber, a super-structure polarization-maintaining fiber grating, a polarization-maintaining optical isolator, a polarization-maintaining optical fiber, and a thermoelectric refrigerating machine. The laser device uses a short and straight single-frequency resonant cavity structure, the heavily-doped and high-gain characteristics of the multicomponent glass optical fiber, a frequency selection role and wavelength tuning function of the thermal optical tunable filter and the superstructure polarization-maintaining fiber grating, and combines a precision temperature adjustment technology, and by means of real-time adjustment of distribution of reflection wavelengths and transmission wavelengths, the laser device changes spectrum peak overlapping positions, so as to implement stable output of wide-tuning-range, extra-narrow-linewidth, high-extinction-ratio and high-output-power continuously tunable single-frequency linear-polarization laser.
Abstract:
A fiber laser having a thermal controller operatively connected to one or more fiber Bragg gratings is provided. The thermal controller does not impart much or imparts very little mechanical stress or strain to the optical fiber in which the FBGs reside because such forces can alter the FBG performance. Rather, the thermal controller utilizes a thermally conductive semi-solid or non-Newtonian fluid to submerge/suspend a portion of the optical fiber in which FBG resides. Temperature control logic controls whether a thermoelectric heater and cooler should be directed to increase or decrease its temperature. The thermoelectric heater and cooler imparts or removes thermal energy from the FBG to efficiently control its performance without the application of mechanical stress. The fiber laser having a thermal controller generally is able to increase laser output power greater than two times the amount of output power of a similarly fabricated fiber laser free of the thermal controller(s).
Abstract:
The present disclosure describes systems and methods for beam wavelength stabilization and output beam combining in dense wavelength multiplexing (DWM) systems. Systems and methods are described for performing beam wavelength stabilization and output beam combining in DWM systems while achieving increased wall-plug efficiency and enhanced beam quality. Interferometric external resonator configurations can be used to greatly increase the brightness of DWM system output beams by stabilizing the wavelengths of the beams emitted by the emitters of the DWM laser source. The resonant cavities described by the present disclosure provide advantages over the prior art in the form of decreased cost, increased wall plug efficiency and increased output beam quality. Particular implementations of the disclosure achieve increased wall plug efficiency and increased output beam quality through a combination of innovative cavity designs and the utilization of reflection diffraction elements for beam combining.
Abstract:
A laser apparatus able to prevent the formation of condensation at the time of maintenance work. The laser apparatus includes a housing having an openable sealed structure, an optical system set inside the housing, a temperature regulation mechanism maintaining the optical system at a predetermined temperature, and a preparatory step controller controlling a preparatory step performed before opening the housing. The temperature regulation mechanism is configured to maintain the optical system at a first temperature during operation of the laser apparatus and to maintain the optical system at a second temperature of the first temperature or more when the preparatory step is started.
Abstract:
A fiber laser having a thermal controller operatively connected to one or more fiber Bragg gratings is provided. The thermal controller does not impart much or imparts very little mechanical stress or strain to the optical fiber in which the FBGs reside because such forces can alter the FBG performance. Rather, the thermal controller utilizes a thermally conductive semi-solid or non-Newtonian fluid to submerge/suspend a portion of the optical fiber in which FBG resides. Temperature control logic controls whether a thermoelectric heater and cooler should be directed to increase or decrease its temperature. The thermoelectric heater and cooler imparts or removes thermal energy from the FBG to efficiently control its performance without the application of mechanical stress. The fiber laser having a thermal controller generally is able to increase laser output power greater than two times the amount of output power of a similarly fabricated fiber laser free of the thermal controller(s).
Abstract:
A tunable narrow-linewidth single-frequency linear-polarization laser device comprising a heat sink, a pumping source packaged on the heat sink, a first and second collimating lenses, a laser back cavity mirror, a thermal optical tunable filter, a rare-earth-ion heavily-doped multicomponent glass optical fiber, a super-structure polarization-maintaining fiber grating, a polarization-maintaining optical isolator, a polarization-maintaining optical fiber, and a thermoelectric refrigerating machine. The laser device uses a short and straight single-frequency resonant cavity structure, the heavily-doped and high-gain characteristics of the multicomponent glass optical fiber, a frequency selection role and wavelength tuning function of the thermal optical tunable filter and the superstructure polarization-maintaining fiber grating, and combines a precision temperature adjustment technology, and by means of real-time adjustment of distribution of reflection wavelengths and transmission wavelengths, the laser device changes spectrum peak overlapping positions, so as to implement stable output of wide-tuning-range, extra-narrow-linewidth, high-extinction-ratio and high-output-power continuously tunable single-frequency linear-polarization laser.
Abstract:
A laser system includes a laser element, a pump source configured to input light to the laser element, a first cooling circuit and a second cooling circuit. The first cooling circuit includes a first pump configured to drive a first flow of cooling liquid through a first fluid pathway, a first primary heat exchanger configured to cool the first flow of cooling liquid, and a laser element heat exchanger configured to remove heat from the laser element using the first flow of cooling liquid. The second cooling circuit includes a second pump configured to drive a flow of cooling liquid through a second fluid pathway, a second primary heat exchanger configured to cool the second flow of cooling liquid, and a pump source heat exchanger configured to remove heat from the pump source using the first and second flows of cooling liquid.
Abstract:
A system provides for a way for cooling an optical fiber. The system includes a coolant and a conduit. The conduit allows the coolant to flow through the conduit. At least part of the fiber passes through the conduit allowing the coolant to flow around the at least part of the fiber. In some configurations, the fiber runs parallel to the conduit. The system can include a pump diode that is part of an optical laser connected to an end of the fiber. The optical laser can further include a high reflector connected to the fiber and a partial reflector connected to the fiber to reflect some light back and forth between the high reflector and the partial reflector.