摘要:
An error correction device error corrects without increasing in circuit scale. An encoder, includes: a first ECC encoder which interleaves a data string into n (n≧2) blocks of data strings at every m (m≧2) bits, and adds the error correction code parity; a parity encoder which creates a parity bit at every plurality of bits of the error correction code word, and adds the parity bit to said error correction code word; and a second ECC encoder, which generates a second error correction encoding, which is a linear encoding using iterative decoding. Concatenated type encoded data, where a parity bit is added to every plurality of bits, is created, so an increase of circuit scale can be prevented even if a data string is interleaved into a plurality of blocks and error correction code parity is generated.
摘要:
Various approaches to recover data are described. An one example, an encoded data stream is processed in a first channel decoder producing a channel decoder output. The channel decoder output and the encoded data stream are processed in an error compensation unit to compensate the channel decoder output for low frequency noise and produce an error compensated data stream. The error compensated data stream is processed in a second channel decoder to produce a recovered data stream, wherein the recovered data stream has a reduction in the number of errors as compared to the encoded data stream. Systems to iteratively recover data from an encoded data stream are also described.
摘要:
An embodiment of a data write path includes encoder and write circuits. The encoder circuit is operable to code data so as to render detectable a write error that occurs during a writing of the coded data to a storage medium, and the write circuit is operable to write the coded data to the storage medium. For example, such an embodiment may allow rendering detectable a write error that occurs while writing data to a bit-patterned storage medium.
摘要:
RFID data signals from RFID tags may be recovered by determining the probabilities of transitions between data states between a series of a pairs of signal samples using a set of predetermined probabilities related to data, timing, baud rate and/or phase variables affecting the received signal and processing those determined probabilities to determine the sequence of such transitions that has the highest probability of occurrence. A second set of predetermined probabilities related to transitions in the opposite direction may be used to sequence in a reverse direction. The determination of the sequence representing the RFID tag data may be iterated in both directions until further iterations do not change the determined probabilities.
摘要:
A communication channel including Reed-Solomon (RS) and single-parity-check (SPC) encoding/decoding. Multiple RS codewords are combined and then SPC encoded into an RS/SPC array. A soft-input soft-output (SISO) channel detector detects the RS/SPC encoded bits and provides soft (reliability) information on these bits. A combined RS and SPC error correction block provides a recovered user output. An iterative soft input decoding algorithm combines RS and SPC error correction.
摘要:
Two levels of error correction decoding are performed using first and second level decoders. A composite code formed by combining an inner component code and an outer component code can be used to decode the data and correct any errors. Performing two level decoding using a composite code allows the size of the inner parity block to be reduced to a single Reed-Solomon symbol while keeping a good code rate. The first level decoder generates soft information. The soft information can indicate a most likely error event for each possible syndrome value of the inner component code. The soft information can also include error metric values for each of the most likely error events. The second level decoder generates corrected syndrome values based on the soft information using the outer component code. The most likely trellis path that corresponds to the corrected syndrome values is then selected.
摘要:
Various systems and methods for error reduction in a digital information system are disclosed herein. As one example, a digital storage system is provided that includes a soft output Viterbi algorithm channel detector operable to receive an encoded data set, and to provide a hard and a soft output representing the encoded data set. The hard and the soft output from the soft output Viterbi algorithm channel detector are provided to a single parity row decoder that provides another hard output that is an error reduced representation of the encoded data set. The encoded data set is additionally provided from the buffer to another channel detector via a delay element. The hard output from the single parity row decoder and the time shifted encoded data set are provided to coincident with each other to another channel detector.
摘要:
A system, method and computer program product is provided for mitigating the effects of burst noise on packets transmitted in a communications system. A transmitting device applies an outer code, which may include, for example, a block code, an exclusive OR (XOR) code, or a repetition code, to one or more packets prior to adaptation of the packets for transmission over the physical (PHY) layer of the communications system, wherein the PHY layer adaptation may include FEC encoding of individual packets. The outer coded packets are then separately transmitted over a channel of the communications system. A receiving device receives the outer coded packets, performs PHY level demodulation and optional FEC decoding of the packets, and then applies outer code decoding to the outer coded packets in order to restore packets that were erased during transmission due to burst noise or other impairments on the channel.
摘要:
Systems and methods are provided for implementing error identification and evaluation for a Reed-Solomon (RS) error-correction code (ECC) system. The BMA algorithm and/or list decoding may produce one or more error locator polynomials that are related to a decision-codeword. An accelerated Chien search can be used to more quickly evaluate the one or more error locator polynomial. If the accelerated Chien search identifies a valid error locator polynomial, a normal Chien search can be used to identify error locations, and Forney's algorithm or an equivalent technique can be used to evaluate the error values. A RS ECC decoder can include a computation circuit that evaluates an error locator polynomial or an error evaluator polynomial. The computation circuit can include computation components that receive the coefficients of the polynomials.
摘要:
Systems and methods are provided for implementing list decoding in a Reed-Solomon (RS) error-correction system. A detector can provide a decision-codeword from a channel and can also provide soft-information for the decision-codeword. The soft-information can be organized into an order of combinations of error events for list decoding. An RS decoder can employ a list decoder that uses a pipelined list decoder architecture. The list decoder can include one or more syndrome modification circuits that can compute syndromes in parallel. A long division circuit can include multiple units that operate to compute multiple quotient polynomial coefficients in parallel. The list decoder can employ iterative decoding and a validity test to generate error indicators. The iterative decoding and validity test can use the lower syndromes.