Abstract:
A method of configuring an analog-to-digital converter (ADC) includes configuring the ADC to operate in one of a low-pass filter mode and a band-pass filter mode according to a value of a control signal. In at least one embodiment, the method further includes configuring an integrator gain of the ADC and a feed-forward gain of the ADC based on selection of one of a low-intermediate frequency (LIF) mode and a zero-intermediate frequency (ZIF) mode.
Abstract:
Disclosed are hybrid heterodyne transmitters and receivers for use in communications systems, or other systems, and the corresponding methods for hybrid heterodyne transmitting and receiving. A heterodyne receiver for converting a continuous time modulated signal to a discrete time digital baseband signal includes a sigma-delta modulator. The sigma-delta modulator is a signal-delta analog-to-digital converter constructed and arranged to receive a modulated signal at an RF carrier frequency and provide a quantized output at a first intermediate frequency. The heterodyne receiver may also include a digital mixer constructed and arranged to receive a data stream quantized by the sigma-delta analog-to-digital converter and receive a signal at a second mixing frequency. The digital mixer then provides digital signals representative of a baseband signal suitable for digital signal processing.
Abstract:
To provide a complex bandpass ΔΣAD modulator capable of suppressing the influence of an image component caused by a mismatch between I- and Q-channels on a signal component with low power consumption.A complex bandpass READ modulator 10 is configured by a subtraction unit 20, a complex bandpass filter 30, an addition unit 40, a noise extraction circuit unit 50, an ADC unit 60, and a DAC unit 70. The noise extraction circuit unit 50 extracts a quantized noise signal of the ADC unit 60 based on an input signal of the ADC unit 60 and an output signal of the DAC unit 70, delays the extracted quantized noise signal by one sample time, phase-rotates the delayed signal by a predetermined angle, and feeds back the rotated signal to the input side of the ADC unit 60. Thus, a complex bandpass ΔΣAD modulator capable of suppressing the influence of the image component caused by a mismatch between I- and Q-channels on the signal component with low power consumption is provided.
Abstract:
One embodiment of the invention includes a mixed-signal filter. The mixed-signal filter comprises an analog signal path configured to process a first analog signal and an analog-to-digital converter (ADC) configured to convert the processed first analog signal to a digital signal. The mixed-signal filter also comprises a programmable digital feedback filter configured to filter the digital signal and a digital-to-analog converter (DAC) configured to convert the filtered digital signal to a second analog signal. The mixed-signal filter further comprises a signal combiner configured to combine an analog input signal of the mixed-signal filter and the second analog signal to generate the first analog signal.
Abstract:
A transducer device for converting an analog DC voltage signal into a digital signal is provided, with an oscillator device for outputting a first oscillator signal and a second oscillator signal, whereby the oscillator device is formed to generate the first oscillator signal and the second oscillator signal phase-locked to one another and with the substantially same frequency from a reference signal, with an analog frequency converter connected to the oscillator device for transforming the analog DC voltage signal by the first oscillator signal in a first spectral range with a first center frequency to obtain a transformed signal, with an analog-to-digital converter for converting the transformed signal into a transformed digital signal; and with a digital frequency converter connected to the oscillator device for transforming the transformed digital signal by means of the second oscillator signal in a second spectral range with a second center frequency to obtain the digital signal.
Abstract:
A signal processor includes a sigma-delta modulator. The input signal to the signal-delta modulator may contain a dc component that generates spurious tones in the modulator output. An input signal to the signal processor is multiplied by an output of a waveform generator to produce an up-converted signal prior to processing by the sigma-delta modulator. Preferably, the waveform generator produces a random signal, which may be a pseudorandom signal. However, other waveforms such as a bipolar binary waveform can also be used. The output of the waveform generator is delayed and multiplied by the output of the sigma-delta modulator to produce a down-converted signal with reduced spurious tones. The delay matches the delay of the sigma-delta modulator. The down-converted signal is filtered with a low-pass filter.
Abstract:
In a first-order complex band-pass filter, multiplexers are alternately switched over between time intervals of phases A and B, where the multiplexers includes two multiplexers provided at input and output stages, and a multiplexer provided in a feedback circuit of each of first-order filters and being switching over whether to invert a sign of a feedback signal. Then in a circuit part sandwiched between the multiplexers, a processing performed by an I circuit part and a processing performed by a Q circuit part are alternately switched over so that a sign of a signal inputted to an adder is inverted.
Abstract:
A flexible and programmable circuit for generating a radio frequency signal for transmission includes two delta-sigma modulators, a quadrature clock generator for generating two clock signals having a 90 degree phase difference, two commutators for multiplying the two modulator outputs by +1 and −1 on alternating half cycles of the two quadrature clock signals respectively, a summer for summing the two commutated outputs, and a filter for removing unwanted frequency components before transmission. The circuit directly generates a radio frequency signal without the need for additional frequency translation after the commutation stage.
Abstract:
A complex band-pass ΔΣ AD modulator is provided with a subtracter device, a complex band-pass filter, first and second AD converters, and first and second DA converters. The first and second DA converters and first and second logic circuits are sandwiched by first and second multiplexers. At a first timing of a clock signal, the first multiplexer inputs and outputs the first and second digital signals as they are, and at a second timing thereof, the first multiplexer inputs the first and second digital signals, and outputs the first digital signal as a second digital signal and outputs the second digital signal as a first digital signal. The second multiplexer inputs and outputs first and second analog signals similarly. The first and second logic circuits substantially noise-shapes non-linearities of the first and second DA converters by realizing complex digital and analog filters, using high-pass and low-pass element rotation methods.
Abstract:
A signal processing component is provided where a swapper 702 is provided upstream of real and imaginary processing elements 704 and 706 within a system for processing complex signals. A further swapper 710 is provided downstream of the elements 704 and 706. The swappers 702 and 710 operate in unison.