Abstract:
The present invention relates to a method and an apparatus for driving image pick-up tubes in, particular, a color television camera or the like having more than one image pick-up tube and in particular to a method and an apparatus for driving image pick-up tubes in which the potentials of the cathode electrodes of the respective image pick-up tubes are set to the same common potential, the potential of the target electrode of at least one of the image pick-up tubes is set substantially to earth potential, target drive potentials are individually applied to the target electrodes of the other image pick-up tubes, and the target potential of each image pick-up tube is set to a value near the earth potential, so that a high S/N ratio is obtained. The driving appartatus can be miniaturized and easily driven. According to the invention, a capacitor, such as a chip capcitor or the like, with a low withstanding voltage can be used in a first-stage amplifier to amplify the video signal from the target electrode. This first-stage amplifier can be arranged near a signal output electrode of the target. Thus, the stray capacitance can be reduced.
Abstract:
Herein disclosed is a folding seat which comprises first and second side arms each being pivotally mounted on a floor, a seatback secured to the side arms to move therewith, a seat cushion connected to the side arms in a manner to be pivotal between a horizontal in-use position and an upright folded position, a first latching mechanism for latching the seat cushion when the same assumes the two positions selectively, a second latching mechanism for latching the second side arm when the same is raised up to its upright position, a third latching mechanism for latching the first side arm when the same is raised up to its upright position, and an unlatching mechanism for making the second latching mechanism inoperative when the seat cushion is pivoted to its upright folded position.
Abstract:
Image forming apparatus includes an image forming unit, a paper transport unit, a paper position measuring unit, a deviation compensating unit in preparation to image forming, a control unit for controlling the image formation and the deviation compensation, wherein the control unit includes a function that receives the results measured by the paper position measuring unit and compensates the deviation of the paper in accordance with the measured results, wherein, the control unit shifts the paper toward a predetermined position in the direction across the paper transporting direction and shift the image forming position in the main scanning direction in accordance with the predetermined position of the paper, wherein, the control unit decides the predetermined position so that the image area based on the image forming position being shifted does not go out of the range of the image formable area.
Abstract:
An object of the present invention is to provide a readily produced and easily handled heat storage member. The heat storage member 1 has a rectangular plane surface of, for example, 15 (cm)×20 (cm), and has a thickness of, for example, 10 to 15 mm. The heat storage member 1 includes a gelatinous latent heat storage material 12, and a large number of highly heat conductive fillers 14 dispersed in the latent heat storage material 12. The highly heat conductive fillers 14 are mixed in the latent heat storage material 12 with a bias in dispersion density. In the rectangular plane surface of the heat storage member 1, a periodic pattern is formed in combination of cellular (cell-like) regions 10, which are demarcated by, for example, hexagonal contour lines 16 and which are periodically arrayed in the vertical and horizontal directions.
Abstract:
In a discharge lamp lighting apparatus comprising a short arc type discharge lamp and a power supply unit, a relation of the natural frequency fe (Hz) of the electrodes, the ripple frequency fd (Hz) of the alternating current that is supplied to the discharge lamp, and the ripple power Pr (W) of the alternating current, satisfies a formula: Pr ≤ f e - f d · ( - 0.13 × Vh Va + 3.0 ) , wherein the volume of the electrode head portion is represented as Vh and the volume of the segment of the electrode axis portion that projects into the arc tube is represented as Va. When the alternating current supplied to the discharge lamp satisfies the formula, it is possible to prevent or control damage in the electrode axis portion, since vibration produced in the electrodes during lighting of the discharge lamp is small even if the discharge lamp is lighted for a long time.
Abstract:
In a light source apparatus, an alternating current is supplied to a high pressure discharge lamp from a power supply apparatus to light the lamp. The arrangement state of the lamp is detected by a detection circuit. When the lamp is horizontally arranged, electric energy, whose flow direction is from one electrode of the lamp to the other electrode, is set to be approximately the same as electric energy, whose flow direction is from the other electrode to the one electrode. When the lamp is vertically arranged, while a cycle, which is the same as a polarity change cycle in the horizontal arrangement, is maintained, electric energy, which flows from an upper electrode to a lower electrode, is set to be smaller than electric energy, which flows from the lower electrode to the upper electrode.
Abstract:
An electric supply device for a high-pressure discharge lamp comprising: an electric supply device control unit, having a function of switching between a steady lighting mode and a low power lighting mode in which electric power lower than the electric power in the steady lighting mode is supplied to the high pressure discharge lamp. While in the low power lighting mode, predetermined base current is continuously supplied to the high pressure discharge lamp and a current supply command signal is sent so that boost current obtained by superimposing current having a predetermined magnitude on the base current, is periodically supplied thereto, and a luminance control signal for adjusting the luminance of a video signal of the liquid crystal projector apparatus according to a magnitude of the electric power of the high pressure discharge lamp, which is operated responding to the supply of the boost current, is sent.
Abstract:
In an ultrahigh pressure mercury lamp that encloses mercury is enclosed in an arc tube, an electrode has a head portion whose diameter is larger than that of an axis portion and a cylindrical portion formed to project from and extend, integrally with a back end face of the head portion, wherein an inner circumference face the cylindrical portion is apart from the axis portion so as to surround the axis portion. During an alternating current lighting, a relational expression of d/(1/f)×1/2≧3.8 is satisfied, wherein a frequency, which relates to an anode operation period that is the longest in the anode operation period during which one electrode serves as an anode, is represented as f, and a distance in an axial direction from the leading edge position of the head portion of the electrode to a boundary position between the head portion and the cylindrical portion is represented as d.
Abstract:
A method of treating a malignant tumor selected from the group consisting of leukemia, colorectal cancer, ovarian cancer, oral cancer, lung carcinoma, breast carcinoma, prostate carcinoma, and melanoma by administering to a patient in need thereof an effective amount of at least one compound represented by formula (1) wherein A, X, Q, R1-3, and n are defined herein.
Abstract:
An image forming apparatus comprises: an image forming section that forms an image on a sheet; a density sensor that measures the image formed on the sheet and outputs a measured value corresponding to a density of the image; a conversion data storing section that stores plural conversion data showing relationship between the measured value outputted from the density sensor and the image density, for each sheet type and each screen for an image; a conversion data selection section that selects at least one conversion data from the plural conversion data stored in the conversion data storing section; and a density adjustment section that adjusts a density for an image formed by the image forming section based on a measured value acquired by measuring a prescribed image formed on a sheet and on the conversion data selected by the conversion data selection section.