Abstract:
A semiconductor structure includes a semiconductor substrate, and an NMOS device at a surface of the semiconductor substrate, wherein the NMOS device comprises a Schottky source/drain extension region. The semiconductor structure further includes a PMOS device at the surface of the semiconductor substrate, wherein the PMOS device comprises a source/drain extension region comprising only non-metal materials. Schottky source/drain extension regions may be formed for both PMOS and NMOS devices, wherein the Schottky barrier height of the PMOS device are reduced by forming the PMOS device over a semiconductor layer having a low valence band.
Abstract:
A MOS device having optimized stress in the channel region and a method for forming the same are provided. The MOS device includes a gate over a substrate, a gate spacer on a sidewall of the gate wherein a non-silicide region exists under the gate spacer, a source/drain region comprising a recess in the substrate, and a silicide region on the source/drain region. A step height is formed between a higher portion of the silicide region and a lower portion of the silicide region. The recess is spaced apart from a respective edge of a non-silicide region by a spacing. The step height and the spacing preferably have a ratio of less than or equal to about 3. The width of the non-silicide region and the step height preferably have a ratio of less than or equal to about 3. The MOS device is preferably an NMOS device.
Abstract:
A method for forming a semiconductor device including a DRAM cell structure comprising a silicon on insulator (SOI) substrate with an embedded capacitor structure including providing a substrate comprising an overlying first electrically insulating layer; forming a first electrically conductive layer on the first electrically insulating layer to form a first electrode; forming a capacitor dielectric layer on the first electrode; forming a second electrically conductive layer on the capacitor dielectric layer to form a second electrode; forming a second electrically insulating layer on the second electrode; and, forming a monocrystalline silicon layer over the second electrode to form an SOI substrate comprising a first capacitor structure.
Abstract:
A precise, consistent, reliable, and high resolution magnetism metric controller applied in electronic and information devices is comprised of a scrolling wheel mechanism to drive by rotation a permanent magnet to retrieve signals of changed magnetic field due to displacement of magnetic poles of the permanent magnet.
Abstract:
A method of forming an epitaxial layer of uniform thickness is provided to improve surface flatness. A substrate is first provided and a Si base layer is then formed on the substrate by epitaxy. A Si—Ge layer containing 5 to 10% germanium is formed on the Si base layer by epitaxy to normalize the overall thickness of the Si base layer and the Si—Ge layer containing 5 to 10% germanium.
Abstract:
A semiconductor product includes a pair of field effect transistor device structures formed one each within a pair of doped well regions within a semiconductor substrate. The pair of field effect transistor device structures is formed with a pair of metal gate electrodes formed employing different laminated metal constructions. By correlating a work function within a metal layer within a gate electrode with a work function of a semiconductor substrate region over which it is formed, the field effect transistor devices are formed with enhanced performance.
Abstract:
Provided is a semiconductor device and a method for its fabrication. The device includes a semiconductor substrate, a first silicide in a first region of the substrate, and a second silicide in a second region of the substrate. The first silicide may differ from the second silicide. The first silicide and the second silicide may be an alloy silicide.
Abstract:
A data processing system includes a storage device which stores data, a processor which processes application programs and generates decision signals, a bus switch which is coupled with the storage device and the processor, and a processing chip which is coupled with the bus switch, the storage device, and the processor. The data processing system takes advantage of functions of playing media and processing application programs, wherein the functions are designed together with the processing chip. It is more powerful for combining both the functions to increase efficiency of the processor than general data processing system.
Abstract:
A transistor includes a gate dielectric overlying a channel region. A source region and a drain region are located on opposing sides of the channel region. The channel region is formed from a first semiconductor material and the source and drain regions are formed from a second semiconductor material. A gate electrode overlies the gate dielectric. A pair of spacers is formed on sidewalls of the gate electrode. Each of the spacers includes a void adjacent the channel region. A high-stress film can overlie the gate electrode and spacers.
Abstract:
A gated p-i-n diode and a method for forming the same. The gated p-i-n diode comprises: a semiconductor substrate; a gate dielectric over the semiconductor substrate; a gate electrode on the gate dielectric; a source gate spacer and a drain gate spacer along respective edges of the gate dielectric and the gate electrode; a source doped with a first type of dopant substantially under the source gate spacer wherein the source has a horizontal distance from a first edge of the gate electrode; a drain doped with the opposite type of the source substantially under the drain spacer and substantially aligned horizontally with a second edge of the gate electrode; a source silicide adjacent the source; and a drain silicide adjacent the drain.