摘要:
The invention provides fibrin-based, biocompatible materials useful in promoting cell growth, wound healing, and tissue regeneration. These materials are provided as part of several cell and tissue scaffolding structures that provide particular application for use in wound-healing and tissue regenerating. Methods for preparing these compositions and using them are also disclosed as part of the invention. A variety of peptides may be used in conjunction with the practice of the invention, in particular, the peptide IKVAV, and variants thereof. Generally, the compositions may be described as comprising a protein network (e.g., fibrin) and a peptide having an amino acid sequence that comprises a transglutaminase substrate domain (e.g., a factor XIIIa substrate domain) and a bioactive factor (e.g., a peptide or protein, such as a polypeptide growth factor), the peptide being covalently bound to the protein network. Other applications of the technology include their use on implantable devices (e.g., vascular graphs), tissue and cell scaffolding. Other applications include use in surgical adhesive or sealant, as well as in peripheral nerve regeneration and angiogenesis.
摘要:
Disclosed are materials that may be used in the design of improved devices and wound treatment platforms though covalent and/or non-covalent attachment of bioactive proteins. The proteins comprise any variety of cell growth and/or healing promoting proteins, such as growth factor. The incorporation of these whole proteins may be designed to provide controlled release thereof in a biological system through further use of enzyme degradation sites. Heparin-binding protein or fusion proteins synthesized to contain a heparin binding domain are two mechanisms that may be used in providing these properties to a matrix, such as a fibrinogen matrix. The proteins will be used to provide enhanced healing in various tissues including vasculature, skin, nerve, and liver. The materials disclosed will be used to enhance would healing and other generative processes by engineering the fibrin gel to contain appropriate proteins with specifically designed release and/or degradation characteristics.
摘要:
An apparatus is provided for applying to a surface of mammalian tissue including soft, living tissue an initially fluent material and then activating the material by exposure to an energy source. The material may be a liquid capable of polymerization to a non-fluent state by exposure to actinic light. The device, and methods that may be practiced in association with the device, enable a wide range of medical conditions to be treated including, for example, the application of a barrier to soft tissue to prevent post-surgical adhesions.
摘要:
An apparatus is provided for applying to a surface of mammalian tissue including soft, living tissue an initially fluent material and then activating the material by exposure to an energy source. The material may be a liquid capable of polymerization to a non-fluent state by exposure to actinic light. The device, and methods that may be practised in association with the device, enable a wide range of medical conditions to be treated including, for example, the application of a barrier to soft tissue to prevent post-surgical adhesions.
摘要:
Described herein is a multi-functional polymeric material for use in inhibiting adhesion and immune recognition between cells and cells, cells and tissues, and tissues and tissues. One component of the polymeric material adsorbs well to cells or tissue, and the other component of the polymeric material does not adsorb well to tissues. A water-soluble polymer that does not bear charge (polynonion) is used as the non-binding component, and a water soluble polymer that is positively charged at physiological pH (polycation) is used as the tissue binding component. When the bi-functional polymeric material contacts a tissue, the tissue-binding component binds and thus immobilizes the attached non-binding component, which will then extend generally away from the tissue surface and sterically block the attachment of other tissues. The method and compositions are useful in inhibiting formation of post-surgical adhesions, protecting damaged blood vessels from thrombosis and restenosis, and decreasing the extent of metastasis of attachment-dependent tumor cells.
摘要:
Described herein is a multi-functional polymeric material for use in inhibiting adhesion and immune recognition between cells and cells, cells and tissues, and tissues and tissues. One component of the polymeric material adsorbs well to cells or tissue, and the other component of the polymeric material does not adsorb well to tissues. A water-soluble polymer that does not bear charge (polynonion) is used as the non-binding component, and a water soluble polymer that is positively charged at physiological pH (polycation) is used as the tissue binding component. When the bi-functional polymeric material contacts a tissue, the tissue-binding component binds and thus immobilizes the attached non-binding component, which will then extend generally away from the tissue surface and sterically block the attachment of other tissues. The method and compositions are useful in inhibiting formation of post-surgical adhesions, protecting damaged blood vessels from thrombosis and restenosis, and decreasing the extent of metastasis of attachment-dependent tumor cells.
摘要:
A method of preventing adhesions by topical administration of fibrinolysis enhancing agents is described. The method uses a topically applied polymeric matrix for delivery of a fibrinolyic agent, preferably urokinase, or tPA. In the most preferred embodiment, the matrix is extremely thin and is polymerized in situ to form a biodegradable polymeric matrix. The matrix provides controlled release of the agent over a period of time effective to prevent surgical adhesions and is biodegradable, usually within the same time frame. Examples demonstrate that the combination of the matrix and the urokinase or tPA is effective in preventing surgical adhesions.