Abstract:
A method for rotogravure printing with radically curable polymerizable printing inks is described, in which said printing inks are cured by actinic radiation and, aside from the necessary additives and pigments, contain no organic solvents and no water as diluent or flow agent. The required flow properties of the inks for rotogravure printing are provided, aside from the use of common reactive diluents such as polymerizable acrylates, by the use of polymerizable vinyl ethers or hydroxyvinyl ethers.
Abstract:
A method is described for producing a microstructured surface relief by applying to a substrate a coating composition which is thixotropic or which acquires thixotropic properties by pretreatment on the substrate, embossing the surface relief into the applied thixotropic coating composition with an embossing device, and curing the coating composition following removal of the embossing device. The substrates obtainable by this method, provided with a microstructured surface relief, are particularly suitable for optical, electronic, micromechanical and/or dirt repellency applications.
Abstract:
Components are separated from liquid or gaseous media with the aid of a nanocomposite comprising nanoparticles in a matrix, wherein the liquid or gaseous medium is brought into contact with the nanocomposite in such a way that at least part of the components to be separated off is bound to the nanocomposite and the resulting laden nanocomposite is separated from the liquid or gaseous medium.
Abstract:
Domestic appliances are provided with a catalytic deodorizing coating, prepared by applying a coating material containing a polycondensate of at least one hydrolysable organosilane, optionally one or more compounds of glass-forming elements, and particles of one or more catalytically active transition metal oxides, and then heat-treating the applied coating material.
Abstract:
Substrates provided with a microstructured surface have a surface layer which (a) comprises a composition comprising condensates of one or more hydrolysable compounds of at least one element M from main groups III to V and/or transition groups II to IV of the Periodic Table of the Elements, at least some of these compounds containing not only hydrolysable groups A but also non-hydrolysable, carbon-containing groups B and the total molar ratio of groups A to groups B in the parent monomeric starting compounds being from 10:1 to 1:2, from 0.1 to 100 mol % of the groups B being groups B′ containing on average from 5 to 30 fluorine atoms which are attached to one or more aliphatic carbon atoms distanced from M by at least two atoms, and (b) has a microstructuring of such kind that the contact angle with respect to water or hexadecane is at least 5° higher than the contact angle of a corresponding smooth surface. The substrates provided with a microstructured surface are particularly suitable as transparent or translucent easy-to-clean systems.
Abstract:
The invention relates to a connector which has an inner displacement member. The flow is stopped by the connector, i.e. the connector is impervious, in a first position. In a second position of the displacement member, with a stop defining the position, flow apertures are released which release the flow into the flow carrying line.
Abstract:
Preparations of particles having a glass surface, wherein more than 75% by weight of these particles have a particle size between 0.5 &mgr;m and 15 &mgr;m and a glass surface which contains between 2 and 6 mole % zinc oxide, have proven to be particularly advantageous in processes for the purification of nucleic acids. This in particular results in an increased nucleic acid yield.
Abstract:
The invention relates to nanoscale particles suited especially for use in tumor therapy by hyperthermia. Said particles comprise a (preferably superparamagnetic) iron oxide-containing core and at least two shells surrounding said core. The (innermost) shell adjoining the core is an envelope which comprises groups capable of forming cationic groups and is broken down by human or animal tissue at such a slow rate as to allow for association of the core surrounded by said envelope with the surface of cells and/or for absorption of said core into the inside of cells. The outer shell(s) consist(s) of species having neutral and/or anionic groups which allow the nanoscale particles to appear to the outside as having a neutral or negative charge and which are broken down by human or animal tissue more rapidly than the innermost shell—and in so doing uncover the shells underneath—but still sufficiently slowly so as to ensure that the nanoscale particles are adequately distributed in a tissue infiltrated with same particles in a particular point.
Abstract:
The invention relates to powder-coated substrates bearing on a powder-coated surface a scratch-resistant and abrasion-resistant topcoat of a coating material which comprises: a) condensates based on hydrolyzable silanes containing at least one non-hydrolyzable substituent, the hydrolyzable silanes having an epoxide group on at least one non-hydrolyzable substituent; b) a curing catalyst selected from Lewis bases and alkoxides of titanium, zirconium or aluminium; c) nanoscale particulate inorganic solids having a particle size in the range from 1 to 100 nm; and d) at least one organic monomer, oligomer or polymer containing at least one epoxide group.
Abstract:
The invention relates to a nanocomposite for thermal insulation especially for fireproofing purposes, which can be obtained by combining (A) at least 35 wt. % of nanoscaled, optionally surface-modified particles of an inorganic compound; (B) 10-60 wt. % of a compound with at least two functional groups which can react and/or interact with the surface groups of nanoscaled particles (A), (C) 1-40 wt. % of water and/or an organic solvent which has no functional groups or only one which is defined in (B), wherein the above-mentioned percentages relate to the sum of components (A), (B) and (C), and (D)=0-10 wt. % (based on the nanocomposite) of additives.