Abstract:
The present invention relates to the preparation of hyperbranched polyamines and its use to exfoliate inorganic clays into random form of nanosilicate platelets. The hyperbranched polyamines serving as exfoliating agent are prepared by polymerizing poly(oxypropylene)-triamine and diglycidyl ether of bisphenol-A (DGEBA). Hydrophilic amine groups of the exfoliating agent are acidified and then reacted with the layered inorganic silicate clay through cation exchange reaction and physical clay exfoliation to give random form of nanosilicate platelets.
Abstract:
The present invention relates to an exfoliating agent and to a process for producing random form of nanoscale silica plates. The exfoliating agent applied in the present invention has the formula: wherein n=1 to 5 and R is a polyoxypropylene group, polyoxyethylene/oxypropylene group, or polyethylene amino group. In this invention, layered silicate clays are exfoliated into random silica plates by acidifying AMO with inorganic acid, adding the acidified AMO to layered silicate clay with agitation, and adding sodium hydroxide or chloride of alkali metal or alkaline-earth metal, in ethanol, water and a hydrophobic organic solvent to the intermediate product and repeating phase separation procedures to isolate random silica plates from water phase.
Abstract:
The present invention discloses a method for producing a clay/AMO complex by modifying layered inorganic silicate clay with the intercalating agent AMO (amine terminal-mannich oligomer). The AMO is prepared by polymerizing polyoxyalkylene amine having molecular weight over 1000, p-cresol and formaldehyde. The present invention also discloses a method for producing nanosilica plates by extracting the AMO from the above complex with a hydroxide or a chloride of alkali metal or alkaline-earth metal. The extracted AMO can be recycled for reusing.
Abstract:
The present invention relates to an exfoliating agent and to a process for producing random form of nanoscale silica plates. Two types of exfoliating agents are applied in the present invention, which respectively have the formula: wherein R is a polyoxypropylene group, polyoxyethylene/oxypropylene group, or polyethylene amino group. In this invention, layered silicate clays are exfoliated into random silica plates by acidifying AMO or AEO with inorganic acid, adding the acidified AMO or AEO to layered silicate clay with agitation, and adding sodium hydroxide or chloride of alkali metal or alkaline-earth metal, in ethanol, water and a hydrophobic organic solvent to the intermediate product and repeating phase separation procedures to isolate random silica plates from water phase.
Abstract:
The present invention provides a polyamide composition comprising: a polyamide containing an alkylene oxide group; and a metal salt. The polyamide composition of the present invention has long lasting antistatic properties and a lower surface resistivity than the polyamide alone.
Abstract:
The present invention is directed to the use of diphenylamine alkoxylate compounds as additives in fuel compositions. The invention is also directed to the use of these compounds for decreasing intake valve deposits.
Abstract:
The present invention is directed to the use of cyclic amide compounds containing multiple polyether alcohol backbones as additives in fuel compositions having a major amount of a mixture of hydrocarbons in the gasoline boiling range and a minor amount of one or more cyclic amide compounds containing multiple polyether backbones. The invention is also directed to the use of these cyclic amide alkoxylate compounds for decreasing intake valve deposits, controlling octane requirement increases and reducing octane requirement. The invention is further directed to cyclic amide compounds containing multiple polyether backbones.
Abstract:
Diamidopolyamines are prepared by reacting glutamic acid with two moles, per mole of glutamic acid, of a defined class of diamines, including oxyethyelene diamines, oxypropylenediamines, oxyethylene/propylene diamines, oxypropylene triamines, 1,2-diaminocyclohexane and isophorone diamine, whereby each of the carboxyl groups of the glutamic acid will react with an amine group of the amine reactant to thereby provide primary amine terminated amidopolyamines containing, internally, the unreacted primary amine group of the glutamic acid.
Abstract:
A compound of the formula: ##STR1## where each of the R groups are the same and include a C.sub.1 to C.sub.4 alkyl and R' is either ##STR2## where x is a number from 2 to 10 is disclosed. The use of the prescribed component as a light, heat and oxidation stabilizer in polyurea, polyurethane and polyurethane-urea elastomers, as well as epoxy systems, is also disclosed.
Abstract:
Polyoxyalkylene diamine reaction products which contain as the principle reaction component, a diamine having the formula: ##STR1## wherein R' independently represents hydrogen or methyl and x is a number having an average value of at least 1 to about 60 and a diisocyanate of the formula: ##STR2## The products of the invention are obtained by reacting an excess of polyoxyalkylene diamine with a diisocyanate in the presence of a polar solvent and have the following general structures: ##STR3## where B is alkyl group from diisocyanates, and R' has the same meaning as above.These products are further used to prepare coatings with improved properties by reacting said amine products with isocyanates prepolymers and epoxy material.