摘要:
A method including forming a via dielectric layer on a semiconductor device substrate; forming a trench dielectric layer on the via dielectric layer; forming a trench through the trench dielectric layer to expose the via dielectric layer; forming a via in the via dielectric layer through the trench to expose the substrate; and forming a semiconductor material in the via and in the trench. An apparatus including a device substrate; a dielectric layer formed on a surface of the device substrate; and a device base formed on the dielectric layer including a crystalline structure derived from the device substrate.
摘要:
A complementary metal oxide semiconductor integrated circuit may be formed with NMOS and PMOS transistors that have high dielectric constant gate dielectric material over a semiconductor substrate. A metal barrier layer may be formed over the gate dielectric. A workfunction setting metal layer is formed over the metal barrier layer and a cap metal layer is formed over the workfunction setting metal layer.
摘要:
Ambipolar conduction can be reduced in carbon nanotube transistors by forming a gate electrode of a metal. Metal sidewall spacers having different workfunctions than the gate electrode may be formed to bracket the metal gate electrode.
摘要:
Complementary metal oxide semiconductor integrated circuits may be formed with NMOS and PMOS transistors having different gate dielectrics. The different gate dielectrics may be formed, for example, by a subtractive process. The gate dielectrics may differ in material, thickness, or formation techniques, as a few examples.
摘要:
Described is a CMOS transistor structure with a multi-layered gate electrode structure and a method of fabrication. The gate electrode structure has a three-layered metallic gate electrode and a polysilicon layer. The first metallic layer acts as a barrier to prevent the second metallic layer from reacting with an underlying dielectric. The second metallic layer acts to set the work function of the gate electrode structure. The third metallic layer acts as a barrier to prevent the second metallic layer from reacting with the polysilicon layer. The method of fabricating the gate electrode structure includes forming the three metallic layers thick enough that each layer provides the barrier and work-function setting functions mentioned above, but also thin enough that a subsequent wet-etch can be performed without excessive undercutting of the metallic layers. During implant and anneal processes, the polysilicon layer acts as a protective mask over the metallic layers to protect an underlying silicon substrate from interacting with dopants used during the implant process.
摘要:
Complementary metal oxide semiconductor metal gate transistors may be formed by depositing a metal layer in trenches formerly inhabited by patterned gate structures. The patterned gate structures may have been formed of polysilicon in one embodiment. The metal layer may have a workfunction most suitable for forming one type of transistor, but is used to form both the n and p-type transistors. The workfunction of the metal layer may be converted, for example, by ion implantation to make it more suitable for use in forming transistors of the opposite type.
摘要:
In a metal gate replacement process, a gate electrode stack may be formed of a germanium containing layer. In subsequent processing of the source/drains, high temperature steps may be utilized, forming a germinide on said stacks. That germinide may be removed, prior to removing the rest of the stack, using H2O2.
摘要翻译:在金属栅极替换工艺中,栅电极堆叠可以由含锗层形成。 在源/下水道的后续处理中,可以利用高温步骤,在所述堆上形成发芽。 在使用H 2 O 2 O 2除去堆叠的其余部分之前,可以除去该发芽物。
摘要:
Embodiments of a transition metal alloy having an n-type or p-type work function that does not significantly shift at elevated temperature. The disclosed transition metal alloys may be used as, or form a part of, the gate electrode in a transistor. Methods of forming a gate electrode using these transition metal alloys are also disclosed.
摘要:
A transistor comprising a gate electrode formed on a gate dielectric layer formed on a substrate. A pair of source/drain regions are formed in the substrate on opposite sides of the laterally opposite sidewalls of the gate electrode. The gate electrode has a central portion formed on the gate dielectric layer and over the substrate region between the source and drain regions and a pair sidewall portions which overlap a portion of the source/drain regions wherein the central portion has a first work function and said pair of sidewall portions has a second work function, wherein the second work function is different than the first work function.
摘要:
Methods of forming a microelectronic structure are described. Those methods comprise providing a substrate comprising source/drain and gate regions, wherein the gate region comprises a metal layer disposed on a gate dielectric layer, and then laser annealing the substrate.