摘要:
Complementary metal oxide semiconductor metal gate transistors may be formed by depositing a metal layer in trenches formerly inhabited by patterned gate structures. The patterned gate structures may have been formed of polysilicon in one embodiment. The metal layer may have a workfunction most suitable for forming one type of transistor, but is used to form both the n and p-type transistors. The workfunction of the metal layer may be converted, for example, by ion implantation to make it more suitable for use in forming transistors of the opposite type.
摘要:
A method utilizing a common gate electrode material with a single work function for both the pMOS and nMOS transistors where the magnitude of the transistor threshold voltages is modified by semiconductor band engineering and article made thereby.
摘要:
A sacrificial gate structure, including nitride and fill layers, may be replaced with a metal gate electrode. The metal gate electrode may again be covered with a nitride layer covered by a fill layer. The replacement of the nitride and fill layers may reintroduce strain and provide an etch stop.
摘要:
A method of fabricating a MOS transistor having a thinned channel region is described. The channel region is etched following removal of a dummy gate. The source and drain regions have relatively low resistance with the process.
摘要:
A method for making a semiconductor device is described. That method comprises forming a high-k gate dielectric layer on a substrate, forming a barrier layer on the high-k gate dielectric layer, and forming a fully silicided gate electrode on the barrier layer.
摘要:
A method for making a semiconductor device is described. That method comprises forming an oxide layer on a substrate, and forming a high-k dielectric layer on the oxide layer. The oxide layer and the high-k dielectric layer are then annealed at a sufficient temperature for a sufficient time to generate a gate dielectric with a graded dielectric constant.
摘要:
A method for fabricating a three-dimensional transistor is described. Atomic Layer Deposition of nickel, in one embodiment, is used to form a uniform silicide on all epitaxially grown source and drain regions, including those facing downwardly.
摘要:
In a metal gate replacement process, a cup-shaped gate metal oxide dielectric may have a vertical portion that may be exposed to a silicon ion implantation. As a result of the implantation, the dielectric constant of a vertical portion may be reduced, reducing fringe capacitance.
摘要:
A semiconductor device is described. That semiconductor device comprises a high-k gate dielectric layer that is formed over a channel that is positioned within a substrate, and a metal gate electrode that is formed on the high-k gate dielectric layer. The high-k gate dielectric layer has off-state leakage characteristics that are superior to those of a silicon dioxide based gate dielectric, and on-state mobility characteristics that are superior to those of a high-k gate dielectric that comprises an isotropic material.
摘要:
Complementary metal oxide semiconductor integrated circuits may be formed with NMOS and PMOS transistors having different gate dielectrics. The different gate dielectrics may be formed, for example, by a replacement process. The gate dielectrics may differ in material, thickness, or formation techniques, as a few examples.