Abstract:
In one example, a device for decoding video data includes a memory configured to store video data and a video decoder configured to determine that a value for a right shift parameter for an escape-mode coded pixel of a palette-mode coded block of the video data is less than zero, based on the value for the right shift parameter being less than zero, set a value for a left shift parameter to a positive value having an absolute value equal to an absolute value of the right shift parameter, and inverse quantize the escape-mode coded pixel using the value of the left shift parameter.
Abstract:
In an example, a method of decoding video data may include receiving a palette mode encoded block of video data of a picture. The method may include receiving encoded palette mode information for the palette mode encoded block of video data. The encoded palette mode information may include a plurality of instances of a first syntax element and a plurality of syntax elements that are different from the first syntax element. The method may include decoding, using bypass mode, the plurality of instances of the first syntax element before decoding the plurality of syntax elements that are different from the first syntax element using context mode. The method may include decoding, using context mode, the plurality of syntax elements that are different from the first syntax element after decoding the plurality of instances of the first syntax element using bypass mode.
Abstract:
Methods and systems for video image coding are provided. Sets of filters may be selected and applied to video information at least partially based on the type of inter layer prediction implemented in coding the video information. Different filters, or filter sets, may be used for inter layer intra prediction, difference domain intra prediction, and/or difference domain inter prediction. Filter selection information may be embedded in the video bit stream.
Abstract:
According to techniques of this disclosure, a video decoder can be configured to, for one or more blocks coded with wavefront parallel processing enabled, determine a coding tree block (CTB) delay, wherein the CTB delay identifies a delay between when a first row of CTBs starts being decoded and when a second row of CTBs below the first row of CTBs starts being decoded; for a current block of video data coded in an intra-block copy (IBC) mode and coded with wavefront parallel processing disabled, determine an IBC prediction region for the current block within a picture that includes the current block based on the CTB delay that was determined for the one or more blocks coded with wavefront parallel processing enabled; identify, from within the determined IBC prediction region for the current block, a predictive block for the current block; and IBC decode the current block based on the predictive block.
Abstract:
An example method of coding video data includes determining, for a current block of video data, a palette that includes a plurality of entries that each corresponds to a respective color value; determining a particular entry in the palette that is predicted to correspond to a color value of a current pixel of the current block; selecting a binarization from a plurality of binarizations; and coding, using the selected binarization, an index that indicates which entry in the palette corresponds to a color value for a current pixel of the current block, wherein coding the index using a first binarization of the plurality of binarizations comprises coding a syntax element that indicates whether the index is equal to the particular entry, and wherein coding the index using a second binarization of the plurality of binarizations comprises coding the index using a variable length code without coding the syntax element.
Abstract:
Techniques are described for determining boundary strength value for an intra-block copy (IBC)-coded block and for selective storage of unfiltered pixel values of a region of a picture based on whether the region will be used as reference for IBC coding.
Abstract:
In an example, a method of processing video data includes determining an input parameter for a truncated binary code that represents a palette index for a pixel of a block of video data based on a number of indices in a palette for the block. The method also includes coding a prefix of the truncated binary code, and determining a palette coding mode for the pixel from a first palette coding mode and a second palette coding mode based only on the prefix of the truncated binary code.
Abstract:
Methods incorporating extensions to copy-above mode for palette mode coding are disclosed. In one aspect, the method includes coding a current pixel of a current block of video data in copy-previous mode via coding a previous line index. The coding of the current pixel in copy-previous mode further including identifying a number of candidate values for the previous line index, identifying a number of escape pixels in a column of pixels above the current pixel in the current block, and reducing a number of candidate values of the previous line index by the number of identified escape pixels.
Abstract:
In an example, a method of coding video data includes determining, for a pixel associated with a palette index that relates a value of the pixel to a color value in a palette of colors used for coding the pixel, a run length of a run of palette indices being coded with the palette index of the pixel, the method also includes determining a maximum run length for a maximum run of palette indices able to be coded with the palette index of the pixel, and coding data that indicates the run length based on the determined maximum run length.
Abstract:
In an example, a method of processing video data includes coding at least one of data that indicates a maximum palette size of a palette of color values for coding a block of video data or data that indicates a maximum palette predictor size of a palette predictor for determining the palette of color values. The method also includes coding the block of video data in accordance with the data.