摘要:
A nonvolatile memory element (100) includes a variable resistance layer (107) including a first metal oxide MOx and a second metal oxide MOy, and reaction energy of chemical reaction related to the first metal oxide, the second metal oxide, oxygen ions, and electrons is 2 eV or less. The chemical reaction is expressed by a formula 13, where a combination (MOx, MOy) of MOx and MOy is selected from a group including (Cr2O3, CrO3), (Co3O4, Co2O3), (Mn3O4, Mn2O3), (VO2, V2O5), (Ce2O3, CeO2), (W3O8, WO3), (Cu2O, CuO), (SnO, SnO2), (NbO2, Nb2O5), and (Ti2O3, TiO2). [Mathematical Expression 13] MOx+(y−x)O2−MOy+2(y−x)e− (Formula 13)
摘要翻译:非易失性存储元件(100)包括可变电阻层(107),其包括第一金属氧化物MOx和第二金属氧化物MOy,以及与第一金属氧化物,第二金属氧化物,氧离子和 电子为2eV以下。 化学反应由式13表示,其中MOx和MOy的组合(MOx,MOy)选自(Cr 2 O 3,CrO 3),(Co 3 O 4,Co 2 O 3),(Mn 3 O 4,Mn 2 O 3),(VO 2,V 2 O 5) ),(Ce 2 O 3,CeO 2),(W3O 8,WO 3),(Cu 2 O,CuO),(SnO,SnO 2),(NbO 2,Nb 2 O 5)和(Ti 2 O 3,TiO 2)。 [数学表达式13] MOx +(y-x)O2-MOy + 2(y-x)e-(式13)
摘要:
Provided is a nonvolatile memory element achieving a stable resistance change and miniaturization, and a method of manufacturing the same. The nonvolatile memory element includes: a first electrode formed above a substrate; an interlayer insulating layer formed above the substrate including the first electrode and having a memory cell hole reaching the first electrode; a barrier layer formed in the memory cell hole and composed of a semiconductor layer or an insulating layer connected to the first electrode; a second electrode formed in the memory cell hole and connected to the barrier layer; a variable resistance layer formed on the second electrode and having a stacked structure whose resistance value changes based on electric signals; and a third electrode connected to the variable resistance layer and formed on the interlayer insulating layer to cover the memory cell hole.
摘要:
A nonvolatile memory element comprising: a first electrode 2; a second electrode 6 formed above the first electrode 2; a variable resistance film 4 formed between the first electrode 2 and the second electrode 6, a resistance value of the variable resistance film 4 being increased or decreased by an electric pulse applied between the first and second electrodes 2, 6; and an interlayer dielectric film 3 provided between the first and second electrodes 2, 6, wherein the interlayer dielectric film 3 is provided with an opening extending from a surface thereof to the first electrode 2; the variable resistance film 4 is formed at an inner wall face of the opening; and an interior region of the opening which is defined by the variable resistance film 4 is filled with an embedded insulating film 5.
摘要:
A stacking structure in which a stacked body (21) including a first conductive layer (13), a semiconductor layer (17), and a second conductive layer (18) and an interlayer insulating film (16) are alternately stacked in parallel to a substrate, a plurality of columnar electrodes (12) arranged so as to penetrated through the stacking structure in a stacking direction, a variable resistance layer (14) which is disposed between the columnar electrode (12) and the first conductive layer (13) and which has a resistance value that reversibly changes according to an application of an electric signal are included. The variable resistance layer (14) is formed by oxidizing part of the first conductive layer (13). The variable resistance layer (14) and an insulating film for electrically separating the semiconductor layer (17) and the second conductive layer (18) from the columnar electrode (12) are simultaneously formed in a single oxidation process.
摘要:
A method of programming a variable resistance element includes: performing a writing step by applying a writing voltage pulse having a first polarity to a transition metal oxide comprising two metal oxide layers which are stacked, so as to change a resistance state of the transition metal oxide from high to low, each of the two metal oxide layers having a different degree of oxygen deficiency; and performing an erasing step by applying an erasing voltage pulse having a second polarity to the transition metal oxide so as to change the resistance state of the transition metal oxide from low to high, the second polarity being different from the first polarity, wherein |Vw1|>|Vw2| is satisfied, where Vw1 represents a voltage value of the writing voltage pulse for first to N-th writing steps, and Vw2 represents a voltage value of the writing voltage pulse for (N+1)-th and subsequent writing steps, where N is equal to or more than 1, te1>te2 is satisfied, where te1 represents a pulse width of the erasing voltage pulse for first to M-th erasing steps, and te2 represents a pulse width of the erasing voltage pulse for (M+1)-th and subsequent erasing steps, where M is equal to or more than 1, and the (N+1)-th writing step follows the M-th erasing step.
摘要:
A nonvolatile memory element comprising: a first electrode 2; a second electrode 6 formed above the first electrode 2; a variable resistance film 4 formed between the first electrode 2 and the second electrode 6, a resistance value of the variable resistance film 4 being increased or decreased by an electric pulse applied between the first and second electrodes 2, 6; and an interlayer dielectric film 3 provided between the first and second electrodes 2, 6, wherein the interlayer dielectric film 3 is provided with an opening extending from a surface thereof to the first electrode 2; the variable resistance film 4 is formed at an inner wall face of the opening; and an interior region of the opening which is defined by the variable resistance film 4 is filled with an embedded insulating film 5.
摘要:
A nonvolatile memory device includes via holes (12) formed at cross sections where first wires (11) cross second wires (14), respectively, and current control elements (13) each including a current control layer (13b), a first electrode layer (13a) and a second electrode layer (13c) such that the current control layer (13b) is sandwiched between the first electrode layer (13a) and the second electrode layer (13c), in which resistance variable elements (15) are provided inside the via holes (12), respectively, the first electrode layer (13a) is disposed so as to cover the via hole (12), the current control layer (13b) is disposed so as to cover the first electrode layer (13a), the second electrode layer (13c) is disposed on the current control layer (13b), a wire layer (14a) of the second wire is disposed on the second electrode layer (13c), and the second wires (14) each includes the current control layer (13b), the second electrode layer (13c) and the wire layer (14a) of the second wire.
摘要:
In a current rectifying element (10), a barrier height φA of a center region (14) of a barrier layer (11) in a thickness direction thereof sandwiched between a first electrode layer (12) and a second electrode layer (13) is formed to be larger than a barrier height φB of a region in the vicinity of an interface (17) between the barrier layer (11) and the first electrode layer (12) and an interface (17) between the barrier layer (11) and the second electrode layer (13). The barrier layer (11) has, for example, a triple-layer structure of barrier layers (11a), (11b) and (11c). The barrier layers (11a), (11b) and (11c) are, for example, formed by SiN layers of SiNx2, SiNx1, and SiNx1 (X1
摘要:
A lower electrode (22) is provided on a semiconductor chip substrate (26). A lower electrode (22) is covered with a first interlayer insulating layer (27) from above. A first contact hole (28) is provided on the lower electrode (22) to penetrate through the first interlayer insulating layer (27). A low-resistance layer (29) forming the resistance variable layer (24) is embedded to fill the first contact hole (28). A high-resistance layer (30) is provided on the first interlayer insulating layer (27) and the low-resistance layer (29). The resistance variable layer (24) is formed by a multi-layer resistance layer including a single layer of the high-resistance layer (30) and a single layer of the low-resistance layer (29). The low-resistance layer (29) forming the memory portion (25) is isolated from at least its adjacent memory portion (25).
摘要:
The invention provides a Stokes parameter measurement device and Stokes parameter measurement method that enable high-precision measurement. The Stokes parameter measurement device comprises a polarization splitting device which comprises an optical element formed of a birefringent crystal material and which, by means of the optical element, splits signal light to be measured into a plurality of polarized light beams and adjusts the polarization state of one or more among the plurality of polarized light beams, and a light-receiving portion for performing photoelectric conversion of an optical component of the signal light split by and emitted from the polarization splitting device.