Abstract:
A tubular plasma display (TPD) is composed of an electroded sheet (electroded sheet) attached to an array of plasma tubes. Both the electrode sheet and the plasma tube array contain wire electrodes, which create very electrically conductive lines and the ability to address very large displays. The electroded sheet is composed of a thin flexible polymer substrate with embedded wire sustain electrodes. Each plasma tube is individually sealed and contains a wire address electrode, a hard emissive coating, a color phosphor and a Xenon based plasma gas. Polymer-based color filter coatings may also be applied to the surface of the plasma tubes after they are gas processed and sealed to drastically increase the bright room contrast, brightness, and color purity of the display.
Abstract:
A method for fabricating microplasma discharge devices and arrays. The method employs techniques drawn from semiconductor device fabrication, such as chemical processing and photolithography, to produce arrays of devices inexpensively. An interdigitated electrode array is deposited on a first substrate. Cavities are formed in a second substrate by laser micromachining, etching, or by chemical (wet or dry) etching and the second substrate is overlaid on the electrode array. The inter-electrode spacing and electrode width are set so that each cavity has at least one pair of electrodes underneath it to excite a microplasma discharge in the cavity. The need to precisely register the two substrates is thus avoided.
Abstract:
According to the present invention, in a plasma display discharge tube in which a plurality of stripe-like anode electrodes (11) and a plurality of stripe-like cathode electrodes (9) are arranged at a predetermined interval to be crossed each other, to thereby constitute an X-Y matrix electrode with a space at each of the crossing portions thereof as a pixel and a plurality of pixels are selectively excited according to an image to display an image, there is provided a plasma display discharge tube in which there are provided an AC type memory electrode (1) arranged opposite to the X-Y matrix electrode (9) and (11) common to all the pixels, and an AC type auxiliary electrode (5) in contact with the AC type memory electrode (1) through an insulating layer and supplying an electric power through a coupling capacitor formed between the same and the AC type memory electrode (1), wherein a memory discharge display is performed between the X-Y matrix electrode (9) and (11) and the AC type memory electrode (1). According to the present invention with the above arrangement, the electrode structure can be simplified to reduce manufacturing steps in number, driving using a pulse memory scheme which can be conventionally realized by only a DC type plasma display discharge tube having high emission efficiency and excellent responsibility is made possible, and a plasma display discharge tube having a long-life AC type electrode can be obtained.
Abstract:
Described is a plasma switched organic electroluminescent display, which includes an electroluminescent part including a cathode layer, an electroluminescent layer on the cathode layer, and an anode layer on the electroluminescent layer, a first power supply unit connected electrically to the anode layer and disconnected electrically to the cathode layer so as to supply the electroluminescent layer with a first power, a plasma generating part generating a plasma wherein the plasma becomes contacted with the cathode layer, and a second power supply unit generating the plasma by supplying the plasma generating part with a second power, wherein the cathode layer is connected electrically to the first power supply unit through the plasma, thereby enabling to emit light by organic electroluminescent as well as drive the display by a low driving voltage using a plasma discharge as a switch.
Abstract:
An electronic display is formed using an array of hollow tubes filled with an electrophoretic material sandwiched between two plates. The hollow tubes have either barrier walls or an electrostatic barrier, which restrict the flow of electrophoretic particles within the hollow tubes. The flow of electrophoretic particles over these barriers is controlled using electric fields, which makes it possible to matrix address the electrophoretic displays. Wire electrodes built into the hollow tubes and electrodes on the two plates are used to address the display. The plates are preferably composed of glass, glass-ceramic, polymer/plastic or metal, while the hollow tubes are preferably composed of glass, polymer/plastic or a combination of glass and polymer/plastic. Color is optionally imparted into the display using colored tubes, adding a color coating to the surface of the tubes, or adding the color to the electrophoretic material. Reflectivity within the display is accomplished by using a reflective material to fabricate the tubes, coating the tubes with a reflective material or coating one of the two plates with a reflective material. The display can also function in a transmissive mode by applying an illuminating back to the display.
Abstract:
Disclosed is an AC type plasma display panel for back light of liquid crystal display device. The disclosed comprises a rear substrate and a front substrate arranged opposite to each other with a predetermined distance; seal paste for sealing the edges of the substrates; a pair of discharge electrodes interposed between the rear substrate and the front substrate, having a plurality of holes and separated with a predetermined distance in a state of no contact with the substrates; and a plurality of spacers interposed between the rear substrate and discharge electrodes and between the front substrate and discharge electrodes in order to maintain distances.
Abstract:
A process for frit-sealing together a panel of a fiber-based information display includes assembling the panel and sealing, after the step of assembling, the panel by forcing a glass frit to flow between the two glass plates that comprise the panel using narrow strips of glass. The glass frit-seals the top and bottom glass plates together and covers the wire electrodes at the end of the fibers to dielectrically isolate them from each other. The process of assembling and frit-sealing the panel is particularly suitable for use in an information display, such as plasma emissive displays, plasma addressed liquid crystal displays, and field emissive displays.
Abstract:
In a plasma display device having a three-dimensional matrix wiring arrangement of anodes, cathodes and address electrodes, writing discharge is caused between anodes and address electrodes to temporarily store writing charge on a dielectric layer, and the writing charge is discharged as an auxiliary discharge by applying a sustaining voltage to the cathodes, thereby inducing main discharge between the anodes and the cathodes.
Abstract:
A plasma display panel includes barriers arranged in a striped form on a front plate, a sustaining electrode formed over the entire surface of a backing plate, insulating layers coated on the sustaining electrode in a matrix form, first electrodes formed on the first insulating layers in a striped form, second insulating layers coated on the first electrodes in a striped form, and second electrodes formed on the second insulating layers. In the driving method, a pulse train having a predetermined period, generated so as to have an amplitude equivalent to a second voltage subtracted from a first voltage and riding on the second voltage, is applied to the sustaining electrode; one pulse generated so as to have an amplitude equivalent to a fourth voltage subtracted from a third voltage, is applied to the first electrodes when the pulse train equals the second voltage and rides on the fourth voltage; sequential pulses generated so as to have an amplitude equivalent to a sixth voltage subtracted from a fifth voltage, is applied to the second electrodes also when the pulse train equals the second voltage; a voltage for creating discharge is equivalent to the sixth voltage subtracted from the third voltage and greater than a discharge firing voltage; and a voltage for maintaining discharge once created while suppressing the discharge if not created, is equivalent to the fifth voltage subtracted from the first voltage and greater than a minimum discharge sustaining voltage but smaller than the discharge firing voltage.
Abstract:
A plasma display panel (PDP) driven by a pulse memory type driving method. In the PDP, a display anode array is arranged on the inner surface of a rear plate to increase the effective light emission area, and a path of charged gas particles from an auxiliary cell to a display cell is formed along the rear plate to enhance the contrast ratio. As a result, high brightness and high contrast ratio can be obtained.