Abstract:
In a mode coding method in encoding a binary alpha block (BAB) within a current frame based on the current frame and a previous frame including a plurality of BAB's, the BAB within the current frame is sub-sampled to generate a sample block and then a reconstructed BAB is reconstructed based on the sample block. In an intra mode, after evaluating the difference between the reconstructed BAB and the BAB, if there is no difference therebetween, a first mode signal is generated and if otherwise, a second mode signal is generated and at the same time a second error data block representing the difference is generated. In an inter mode, besides performing the process in the intra mode described above, a BAB most similar to the BAB within the current frame among the BAB's within the previous frame is detected as a predicted BAB and then the difference between the BAB and the predicted BAB is evaluated. And if there is no difference therebetween, a third mode signal is generated and if otherwise, a fourth mode signal is generated and at the same time a fourth error data block representing the difference is generated. If two or more mode signals among the first to fourth signals are generated, one mode signal among them is selected as a selected mode signal according to a predetermined selection rule.
Abstract:
A contour encoding apparatus encoding a contour of an object in a current frame based on a previous frame first generates a global motion vector between the current and the previous frames and calculates the number of contours in the previous frame. Then, the apparatus determines, for each of current contours, an optimum contour among the previous contours and detects a local motion vector between the optimum and the current contours. Once the global and the local motion vectors are determined, a predicted contour corresponding to each of the current contours is generated by shifting the optimum contour by the global and the local motion vectors. By using the predicted and the current contours, an error representing a difference therebetween is extracted. Subsequently, flag signals describing how close each of the previous contours is to a corresponding current contour are produced based on the number of the previous contours and contour encoding information corresponding to each of the current contours and sequences of the errors and the local motion vectors for the current frame are outputted based on the contour encoding information corresponding to each of the current contours. Finally, the flag signals and the sequences of the errors and the local motion vectors are multiplexed and then the multiplexed data is transmitted as an encoded contour data.
Abstract:
A vertical gradient freeze single crystal growing apparatus utilizing a direct monitoring furnace which is possible to obtain rapid high temperature heating and uniform temperature distribution by using direct monitoring furnace as a higher temperature part furnace provided with double quartz tube applied with gold thin film, and also capable of observing entire process of single crystal growing directly by naked eye.The apparatus includes a direct monitoring furnace corresponding to higher temperature part furnace and lower temperature part furnace mounted on vertically standing guide rails so as to be moved upwardly and downwardly voluntarily thereon simultaneously or independently, and the direct monitoring furnace is provided with heater wires divided into more than two regions to inner side of protecting quartz tube provided within double quartz tube applied with gold thin film on its interior surface and formed with cooling water in and outlets and also crystal growing reaction tube capable of normal and reverse turning is provided thereto, and a number of thermocouples are provided to the furnaces.
Abstract:
FIG. 1 is a front, top, and right side perspective view of a cup sleeve, showing the claimed design; FIG. 2 is a front view thereof and a back view thereof is identical; FIG. 3 is a left side view thereof and a right side view thereof is identical; FIG. 4 is a top view thereof; FIG. 5 is a bottom view thereof; FIG. 6 is another front, top, and right side perspective view thereof; FIG. 7 is a perspective view thereof showing the cup sleeve in a partially folded configuration; and, FIG. 8 is a perspective view thereof showing the cup sleeve in a folded configuration.
Abstract:
Disclosed is a filter cartridge. The filter cartridge includes an inner filter in the form of an approximately cylindrical corrugated membrane, an outer filter in the form of an approximately cylindrical corrugated membrane, the outer filter having a diameter greater than that of the inner filter and being installed around the inner filter, and at least one holder to support the inner filter and the outer filter.
Abstract:
A secondary battery having a current interrupt device (CID) between a negative current collecting plate and a case of the secondary battery. The secondary battery includes: an electrode assembly including a positive electrode, a separator, and a negative electrode; a case housing the electrode assembly; a cap assembly coupled to the case for sealing the case; a positive current collecting plate connected to the positive electrode and the cap assembly; an insulator in the case adjacent an end plate of the case; and a negative current collecting plate connected to the negative electrode and the end plate of the case, the end plate being curved convexly toward an inner cavity of the case.
Abstract:
Provided is a method of protein synthesis. The method of protein synthesis according to the present invention uses an automatic biological material purification apparatus including: a well plate kit; a heating part; and a magnetic field applying part, such that a plurality of target proteins may be more quickly and simply obtained as compared to target proteins obtained by using the existing method for expressing/purifying proteins through conventional cell culture, and a reproducible synthesis efficiency on the same proteins may be obtained due to no deviation between reaction wells.
Abstract:
An organic light emitting diode display includes a substrate having organic light emitting diodes thereon. A thin film encapsulation layer is formed on the substrate such that the thin film encapsulation layer covers the organic light emitting diodes. A nonorganic layer is formed under the thin film encapsulation layer along the edge of the thin film encapsulation layer.
Abstract:
An organic light emitting display panel is disclosed. In one embodiment, the panel includes a pad portion includes: a protection film disposed on an encapsulation layer for encapsulating a pixel portion and extending to the pad portion, wherein the protection film has conductivity in an area corresponding to the pad portion.
Abstract:
A flexible display apparatus and a method of manufacturing the flexible display apparatus are disclosed. A flexible organic light-emitting display apparatus includes: a thin film transistor formed on a substrate in which a plurality of subpixels are located; an organic light-emitting device electrically connected to the thin film transistor and in one of the subpixels, the organic light-emitting device including a first electrode, an organic layer on the first electrode; and a second electrode on the organic layer; a pixel defining layer having an opening that exposes at least a region of the first electrode, and covering an edge region of the first electrode; a capping layer covering the organic light-emitting device; and at least one clamp unit in a non-organic layer region defined next to the one of the subpixels, wherein the non-organic layer region is a region in which the organic layer is not formed.