Abstract:
In a method of forming a semiconductor device, a feature layer is provided on a substrate and a mask layer is provided on the feature layer. A portion of the mask layer is removed in a first region of the semiconductor device where fine features of the feature layer are to be located, the mask layer remaining in a second region of the semiconductor device where broad features of the feature layer are to be located. A mold mask pattern is provided on the feature layer in the first region and on the mask layer in the second region. A spacer layer is provided on the mold mask pattern in the first region and in the second region. An etching process is performed to etch the spacer layer so that spacers remain at sidewalls of pattern features of the mold mask pattern, and to etch the mask layer in the second region to provide mask layer patterns in the second region. The feature layer is etched using the mask layer patterns as an etch mask in the second region and using the spacers as an etch mask in the first region to provide a feature layer pattern having fine features in the first region and broad features in the second region.
Abstract:
In an integrated circuit device and method of manufacturing the same, a resistor pattern is positioned on a device isolation layer of a substrate. The resistor pattern includes a resistor body positioned in a recess portion of the device isolation layer and a connector making contact with the resistor body and positioned on the device isolation layer around the recess portion. The connector has a metal silicide pattern having electric resistance lower than that of the resistor body at an upper portion. A gate pattern is positioned on the active region of the substrate and includes the metal silicide pattern at an upper portion. A resistor interconnection is provided to make contact with the connector of the resistor pattern. A contact resistance between the connector and the resistor interconnection is reduced.
Abstract:
A resistive memory device and a fabrication method thereof are provided. The resistive memory device includes a variable resistive layer formed on a semiconductor substrate in which a bottom structure is formed, a lower electrode formed on the variable resistive layer, a switching unit formed on the lower electrode, and an upper electrode formed on the switching unit.
Abstract:
Provided are a method of forming patterns for a semiconductor device in which a pattern density is doubled by performing double patterning in a part of a device region while patterns having different widths are being simultaneously formed, and a semiconductor device having a structure to which the method is easily applicable. The semiconductor device includes a plurality of line patterns extending parallel to each other in a first direction. A plurality of first line patterns are alternately selected in a second direction from among the plurality of line patterns and each have a first end existing near the first side. A plurality of second line patterns are alternately selected in the second direction from among the plurality of line patterns and each having a second end existing near the first side. The first line patterns alternate with the second line patterns and the first end of each first line pattern is farther from the first side than the second end of each second line pattern.
Abstract:
A method for fabricating a semiconductor device includes forming a first conductive layer doped with an impurity for forming a cell junction over a semiconductor substrate, forming a second layer over the first conductive layer, forming a plurality of active regions by etching the second layer and the first conductive layer, the plurality of the active regions being separated from one another by trenches, forming a side contact connected to a sidewall of the first conductive layer, and forming a plurality of metal bit lines each connected to the side contact and filling a portion of each trench.
Abstract:
A perforated plate support supports dual-cooled fuel rods, each of which has concentric outer and inner tubes and is coupled with upper and lower end plugs at upper and lower ends thereof, and guide thimbles, each of which is used as a passage for a control rod. The perforated plate support is formed as a support plate having the shape of a flat plate, which includes internal channel holes, each of which has a diameter corresponding to an outer diameter of the inner tube, guide thimble holes, each of which has a diameter corresponding to an outer diameter of the guide thimble, and sub-channel holes around each internal channel hole. The upper or lower end of the dual-cooled fuel rod is coupled to the support plate such that the outer diameter of the inner tube is matched with the diameter of the internal channel hole.
Abstract:
A semiconductor device includes: a gate pattern over a substrate; recess patterns provided in the substrate at both sides of the gate pattern, each having a side surface extending below the gate pattern; and a source and a drain filling the recess patterns, and forming a strained channel under the gate pattern.
Abstract:
Provided are a flux-locked loop circuit, a flux-locked loop method and a superconducting quantum interference device (SQUID) measuring apparatus. The flux-locked loop circuit includes a pre-amplifier configured to amplify a signal output of a SQUID, an integrator configured to integrate a signal output from the pre-amplifier and output the integrated signal, an operating range expanding unit configured to initialize the integrator by comparing an output signal of the integrator with a positive or negative reference reset voltage corresponding to an external flux of a predetermined integral multiple of flux quantum, and a feedback circuit configured to supply current to eliminate a difference between the external flux applied to the SQUID and a magnetic flux corresponding to an integral multiple of the reference reset voltage according to the output signal of the integrator.
Abstract:
A first mask layer pattern including a plurality of parallel line portions is formed on an etch target layer on a semiconductor substrate. A sacrificial layer is formed on the first mask layer pattern and portions of the etch target layer between the parallel line portions of the first mask layer pattern. A second mask layer pattern is formed on the sacrificial layer, the second mask layer pattern including respective parallel lines disposed between respective adjacent ones of the parallel line portions of the first mask layer pattern, wherein adjacent line portions of the first mask layer pattern and the second mask layer pattern are separated by the sacrificial layer. A third mask layer pattern is formed including first and second portions covering respective first and second ends of the line portions of the first mask layer pattern and the second mask layer pattern and having an opening at the line portions of the first and second mask layer patterns between the first and second ends. The sacrificial layer and the etch target layer are etched using the third mask layer pattern, the first mask layer pattern and the second mask layer pattern as a mask to thereby form a plurality of parallel trenches in the etch target layer between the line portions of the first and second mask layer patterns. Conductive lines may be formed in the trenches.
Abstract:
A method of forming fine patterns of a semiconductor device, in which a plurality of conductive lines formed in a cell array region are integrally formed with contact pads for connecting the conductive lines to a peripheral circuit. In this method, a plurality of mold mask patterns, each including a first portion extending in a first direction and a second portion which is integrally formed with the first portion and extends in a second direction, are formed within a cell block on a substrate comprising a film which is to be etched. A first mask layer covering sidewalls and an upper surface of each of the plurality of mold mask patterns is formed on the substrate. First mask patterns are formed by partially removing the first mask layer so that a first area of the first mask layer remains and a second area of the first mask layer is removed. The first area of the first mask layer covers sidewalls of adjacent mold mask patterns from among the plurality of mold mask patterns by being located between the adjacent mold mask patterns, and the second area of the first mask layer covers portions of the sidewalls of the plurality of mold mask patterns, the portions corresponding to an outermost sidewall of a mold mask pattern block.