Abstract:
A semiconductor memory device includes a stack of word lines and insulating patterns. Cell pillars extend vertically through the stack of word lines and insulating patterns with memory cells being formed at the junctions of the cell pillars and the word lines. A ratio of the thickness of the word lines to the thickness of immediately neighboring insulating patterns is different at different locations along one or more of the cell pillars. Related methods of manufacturing and systems are also disclosed.
Abstract:
A vertical memory device includes a substrate having a cell array region and a connection region positioned on an exterior of the cell array region. Gate electrode layers are stacked on the cell array region and the connection region of the substrate, forming a stepped structure in the connection region. Channel structures are disposed in the cell array region, extending in a direction perpendicular to an upper surface of the substrate, while passing through the gate electrode layers. Dummy channel structures are disposed in the connection region, extending in the same direction as the channel structures, while passing through the gate electrode layers forming the stepped structure. First semiconductor patterns are disposed below the channel structures, and second semiconductor patterns are disposed below the dummy channel structures. The first and second semiconductor patterns include polycrystalline semiconductor materials.
Abstract:
Semiconductor devices are provided. A semiconductor device includes a stack of alternating gates and insulating layers. The semiconductor device includes a dummy cell region. The semiconductor device includes a plurality of bit lines and a plurality of auxiliary bit lines. Some of the plurality of auxiliary bit lines have different respective lengths. Related methods of forming semiconductor devices are also provided.
Abstract:
A three-dimensional semiconductor memory device includes a substrate including a cell array region and a connection region and an electrode structure including first and second electrodes alternatingly and vertically stacked on the substrate and having a stair-step structure on the connection region. Each of the first and second electrodes may include electrode portions provided on the cell array region to extend in a first direction and to be spaced apart from each other in a second direction perpendicular to the first direction, an electrode connecting portion provided on the connection region to extend in the second direction and to horizontally connect the electrode portions to each other, and protrusions provided on the connection region to extend from the electrode connecting portion in the first direction and to be spaced apart from each other in the second direction.
Abstract:
A semiconductor device, comprising: a plurality of memory cell strings; a bitline; and an interconnection coupling at least two of the memory cell strings to the bitline. Memory cell strings can be coupled to corresponding bitlines through corresponding interconnections. Alternate memory cell strings can be coupled to different bitlines through corresponding different interconnections.
Abstract:
Provided is a memory device including first to third selection lines extending in a first direction and sequentially arranged in a second direction crossing the first direction, multiple sets of first to third vertical pillars, each set coupled with a corresponding one of the first to third selection lines and sequentially arranged in the second direction, a first sub-interconnection connecting the third vertical pillar coupled with the first selection line to the first vertical pillar coupled with the second selection line, a second sub-interconnection connecting the third vertical pillar coupled with the second selection line to the first vertical pillar coupled with the third selection line, and bit lines extending in the second direction and connected to corresponding ones of the first and second sub-interconnections.
Abstract:
A non-volatile memory device includes a tunnel oxide layer, a charge storage layer, a blocking insulating layer, and a gate electrode that are sequentially stacked, as well as an impurity diffusion layer in an active region at both sides of the gate electrode. The gate electrode crosses active regions between device isolation layers formed in a predetermined area of a semiconductor substrate, and an edge of the charge storage layer is extended to have a protruding part that protrudes from the gate electrode. In order to form a charge storage layer having a protruding part, a stack insulating layer including first to third insulating layers is formed in an active region between the device isolation layers formed in the substrate. A plurality of gate electrodes crossing the active region are formed on the stack insulating layer, and a sidewall spacer is formed on both sidewalls of the gate electrode. Using the sidewall spacer and the gate electrode, the stack insulating layer is etched to form a charge storage layer that protrudes from the sidewall of the gate electrode.
Abstract:
A vertical memory device includes a substrate having a cell array region and a connection region positioned on an exterior of the cell array region. Gate electrode layers are stacked on the cell array region and the connection region of the substrate, forming a stepped structure in the connection region. Channel structures are disposed in the cell array region, extending in a direction perpendicular to an upper surface of the substrate, while passing through the gate electrode layers. Dummy channel structures are disposed in the connection region, extending in the same direction as the channel structures, while passing through the gate electrode layers forming the stepped structure. First semiconductor patterns are disposed below the channel structures, and second semiconductor patterns are disposed below the dummy channel structures. The first and second semiconductor patterns include polycrystalline semiconductor materials.
Abstract:
A three-dimensional (3D) semiconductor device includes a stack structure including first and second stacks stacked on a substrate. Each of the first and second stacks includes a first electrode and a second electrode on the first electrode. A sidewall of the second electrode of the first stack is horizontally spaced apart from a sidewall of the second electrode of the second stack by a first distance. A sidewall of the first electrode is horizontally spaced apart from the sidewall of the second electrode by a second distance in each of the first and second stacks. The second distance is smaller than a half of the first distance.
Abstract:
Semiconductor devices are provided. A semiconductor device includes a stack of alternating gates and insulating layers. The semiconductor device includes a dummy cell region. The semiconductor device includes a plurality of bit lines and a plurality of auxiliary bit lines. Some of the plurality of auxiliary bit lines have different respective lengths. Related methods of forming semiconductor devices are also provided.