Abstract:
An image sensor for short-wavelength light includes a semiconductor membrane, circuit elements formed on one surface of the semiconductor membrane, and a pure boron layer on the other surface of the semiconductor membrane. An anti-reflection or protective layer is formed on top of the pure boron layer. This image sensor has high efficiency and good stability even under continuous use at high flux for multiple years. The image sensor may be fabricated using CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) technology. The image sensor may be a two-dimensional area sensor, or a one-dimensional array sensor.
Abstract:
An optical system for detecting contaminants and defects on a test surface includes an improved laser system for generating a laser beam and optics directing the laser beam along a path onto the test surface, and producing an illuminated spot thereon. A detector and ellipsoidal mirrored surface are also provided with an axis of symmetry about a line perpendicular to the test surface. In one embodiment, an optical system for detecting anomalies of a sample includes the improved laser system for generating first and second beams, first optics for directing the first beam of radiation onto a first spot on the sample, second optics for directing the second beam onto a second spot on the sample, with the first and second paths at different angles of incidence to the sample surface. In another embodiment, a surface inspection apparatus includes an illumination system configured to focus beams at non-normal incidence angles.
Abstract:
An improved solid-state laser for generating sub-200 nm light is described. This laser uses a fundamental wavelength between about 1030 nm and 1065 nm to generate the sub-200 nm light. The final frequency conversion stage of the laser creates the sub-200 nm light by mixing a wavelength of approximately 1109 nm with a wavelength of approximately 234 nm. By proper selection of non-linear media, such mixing can be achieved by nearly non-critical phase matching. This mixing results in high conversion efficiency, good stability, and high reliability.
Abstract:
A photocathode is formed on a monocrystalline silicon substrate having opposing illuminated (top) and output (bottom) surfaces. To prevent oxidation of the silicon, a thin (e.g., 1-5 nm) boron layer is disposed directly on the output surface using a process that minimizes oxidation and defects, and a low work-function material layer is then formed over the boron layer to enhance the emission of photoelectrons. The low work-function material includes an alkali metal (e.g., cesium) or an alkali metal oxide. An optional second boron layer is formed on the illuminated (top) surface, and an optional anti-reflective material layer is formed on the boron layer to enhance entry of photons into the silicon substrate. An optional external potential is generated between the opposing illuminated (top) and output (bottom) surfaces. The photocathode forms part of novel sensors and inspection systems.
Abstract:
Determination of one or more optical characteristics of a structure of a semiconductor wafer includes measuring one or more optical signals from one or more structures of a sample, determining a background optical field associated with a reference structure having a selected set of nominal characteristics based on the one or more structures, determining a correction optical field suitable for at least partially correcting the background field, wherein a difference between the measured one or more optical signals and a signal associated with a sum of the correction optical field and the background optical field is below a selected tolerance level, and extracting one or more characteristics associated with the one or more structures utilizing the correction optical field.
Abstract:
A focusing EBCCD includes a control device positioned between a photocathode and a CCD. The control device has a plurality of holes therein, wherein the plurality of holes are formed perpendicular to a surface of the photocathode, and wherein a pattern of the plurality of holes is aligned with a pattern of pixels in the CCD. Each hole is surrounded by at least one first electrode, which is formed on a surface of the control device facing the photocathode. The control device may include a plurality of ridges between the holes. The control device may be separated from the photocathode by approximately half a shorter dimension of a CCD pixel or less. A plurality of first electrodes may be provided, wherein each first electrode surrounds a given hole and is separated from the given hole by a gap.