Abstract:
A medical device system for controlling ventricular pacing therapy during cardiac resynchronization therapy that includes a sensing device to sense a cardiac signal and emit a trigger signal in response to the sensed cardiac signal, a therapy delivery device to deliver the ventricular pacing in response to the emitted trigger signal, and a processor configured to identify a fiducial point of the cardiac signal sensed in real-time, set a window comprising a start point positioned a first distance prior to the fiducial point and an endpoint positioned a second distance less than the first distance subsequent to the fiducial point, determine a signal characteristic of the cardiac signal within the window, determine whether a P-wave is detected in response to the signal characteristic, determine whether an atrio-ventricular interval timer has expired, and emit a trigger signal to deliver the ventricular pacing timed off of the local maximum in response to the P-wave being detected and not timed off of the local maximum in response to the timer being expired.
Abstract:
The present disclosure pertains to cardiac pacing methods and systems, and, more particularly, to cardiac resynchronization therapy (CRT). In particular, the present disclosure pertains to determining whether a patient is experiencing atrial fibrillation (AF). If the patient is experiencing AF, the efficacy of CRT is determined. A signal is sensed in response to a ventricular pacing stimulus. Through signal processing, a number of features are parsed from the signal and a determination is made as to whether the ventricular pacing stimulus evoked a response from the ventricle.
Abstract:
Systems, methods, and interfaces are described herein for assisting a user in noninvasive evaluation of patients for cardiac therapy and noninvasive evaluation of cardiac therapy being delivered. The systems, methods, and interfaces may provide graphical representations of cardiac electrical activation times about one or more portions of human anatomy and one or more cardiac health metrics.
Abstract:
Systems and methods are described herein for generating surrogate cardiac electrical activation times from electrical activity monitored by a plurality of external electrodes. Surrogate cardiac electrical activation times that should be corrected may be identified, or determined, according to one or more metrics, and then such surrogate cardiac electrical activation times may be corrected according to various criterion.
Abstract:
A medical device and medical device system for controlling delivery of therapeutic stimulation pulses that includes a sensing device to sense a cardiac signal and emit a trigger signal in response to the sensed cardiac signal, a therapy delivery device to receive the trigger signal and deliver therapy to the patient in response to the emitted trigger signal, and a processor positioned within the sensing device, the processor configured to determine whether the sensed cardiac signal exceeds a possible P-wave threshold, compare a portion of the sensed cardiac signal to a P-wave template having a sensing window having a length less than a width of the P-wave, confirm an occurrence of a P-wave signal in response to the comparing, emit the trigger signal in response to the occurrence of a P-wave signal being confirmed, and inhibit delivery of the emitting signal in response to the occurrence of a P-wave signal not being confirmed.
Abstract:
Systems, methods, and interfaces are described herein for assisting a user in noninvasive evaluation of patients for cardiac therapy and noninvasive evaluation of cardiac therapy being delivered. The systems, methods, and interfaces may provide graphical representations of cardiac electrical activation times about one or more portions of human anatomy and one or more cardiac health metrics.
Abstract:
Systems, methods, and interfaces are described herein for noninvasively determining an optimal coronary sinus branch to cannulate for a medical electrical lead. One exemplary method involves applying an electrode apparatus having a plurality of electrodes to a torso of a patient. One of a right ventricular (RV) lead is introduced to a right ventricle or a right atrial (RA) lead is introduced to a right atrium. Noninvasively ultrasonic energy is introduced to a target tissue selected from a set of target tissues. In response to delivering ultrasonic energy to the cardiac tissue, a processing unit receives a torso-surface potential signal from each of a plurality of electrodes distributed on a torso of a patient for the target tissue. Signals are sensed from one of the RA lead and the RV lead in response to delivering ultrasonic energy. For at least a subset of the plurality of electrodes, calculating, with the processing unit, a torso-surface activation time based on the signal sensed from the electrode. Determining whether the tissue site or the another tissue site provides optimal cardiac resynchronization.
Abstract:
Methods and systems of evaluating cardiac pacing in candidate patients for cardiac resynchronization therapy and cardiac resynchronization therapy patients are disclosed. The methods and systems disclosed allow treatments to be personalized to patients by measuring the extent of tissue capture from cardiac pacing under various therapy parameter conditions. Systems and methods of optimizing right ventricle only cardiac pacing are also disclosed.
Abstract:
Systems and methods are described herein for assisting a user in evaluation of cardiac therapy. The systems and methods may monitor electrical activity of a patient using external electrode apparatus to provide baseline electrical heterogeneity information and therapy electrical heterogeneity information. The electrical heterogeneity information may be used to generate surrogate hemodynamic information.
Abstract:
Techniques for evaluating cardiac electrical dyssynchrony are described. In some examples, an activation time is determined for each of a plurality of torso-surface potential signals. The dispersion or sequence of these activation times may be analyzed or presented to provide variety of indications of the electrical dyssynchrony of the heart of the patient. In some examples, the locations of the electrodes of the set of electrodes, and thus the locations at which the torso-surface potential signals were sensed, may be projected on the surface of a model torso that includes a model heart. The inverse problem of electrocardiography may be solved to determine electrical activation times for regions of the model heart based on the torso-surface potential signals sensed from the patient.