Semiconductor device and manufacture thereof

    公开(公告)号:US10910332B2

    公开(公告)日:2021-02-02

    申请号:US16530360

    申请日:2019-08-02

    发明人: You Wu Jun Zhu

    摘要: A semiconductor device and its manufacturing method are presented. The manufacturing method includes: providing a semiconductor structure comprising: an interlayer dielectric layer, a first metal layer surrounded by the interlayer dielectric layer, and a semiconductor layer on the interlayer dielectric layer; etching the semiconductor layer to form an opening exposing the interlayer dielectric layer, wherein the opening comprises a first opening and a second opening on the first opening; forming an insulation layer on the semiconductor structure; etching the insulation layer and the interlayer dielectric layer at the bottom of the first opening to form a groove exposing a portion of the first metal layer; forming a second metal layer on the insulation layer and on the bottom and a side surface of the groove; and patterning the second metal layer. The second metal layer in this inventive concept can be removed more completely than conventional methods.

    STATIC RANDOM ACCESS MEMORY
    115.
    发明申请

    公开(公告)号:US20210013215A1

    公开(公告)日:2021-01-14

    申请号:US17032820

    申请日:2020-09-25

    发明人: Yong LI

    摘要: An SRAM (static random access memory) includes a semiconductor substrate; a plurality of PD transistors, each including a first fin structure formed on the semiconductor substrate, a PD gate structure formed across the first fin structure and covering a portion of a top and sidewall surfaces of the first fin structure, and a first source/drain doped layer formed in the first fin structure on both sides of the PD gate structure; a plurality of adjacent transistors, each including a second fin structure formed on the semiconductor substrate and a second source/drain doped layer formed in the second fin structure; an isolation layer, formed on the semiconductor substrate; a fin sidewall film, formed on the isolation layer and covering sidewall surfaces of each PD gate structure; and a first PD dielectric layer, formed on the isolation layer and covering sidewall surfaces of the first source/drain doped layer.

    SEMICONDUCTOR STRUCTURE AND METHOD FOR FORMING THE SAME

    公开(公告)号:US20200381516A1

    公开(公告)日:2020-12-03

    申请号:US16601847

    申请日:2019-10-15

    发明人: Zhaomeng

    摘要: The present disclosure provides a semiconductor structure and a method for forming the same. The method includes: providing a base, the base including a source-drain doped region and an interlayer dielectric layer over the source-drain doped region; etching the interlayer dielectric layer to form an opening that exposes the source-drain doped region; and forming a first doped region at the top of the source-drain doped region exposed by the opening and a second doped region over the first doped region, a projection of the second doped region on the base covering a projection of the first doped region on the base, the doping ion types of the first doped region, the second doped region and the source-drain doped region being the same, and the ion doping concentration of the first doped region and the second doped region being higher than the ion doping concentration of the source-drain doped region. The first doped region and the second doped region surround a contact hole plug in the source-drain doped region, such that the contact hole plug is not easily in direct contact with the source-drain doped region, contact resistance between the contact hole plug and the source-drain doped region is reduced, and the electrical performance of the semiconductor structure is improved.

    Method to improve FinFET device performance

    公开(公告)号:US10797177B2

    公开(公告)日:2020-10-06

    申请号:US16417979

    申请日:2019-05-21

    发明人: Yong Li

    摘要: A method for manufacturing a semiconductor device includes providing a substrate structure having PMOS and NMOS regions. The PMOS region includes a first region, a first gate structure on the first region, and first source and drain regions on opposite sides of the first gate structure. The NMOS region includes a second region and a second gate structure on the second region. The method also includes introducing a p-type dopant into the first source and drain regions, performing a first annealing, forming second source and drain regions on opposite sides of the second gate structure, introducing an n-type dopant into the second source and drain regions, and performing a second annealing. The method satisfies thermal budget requirements of forming PMOS and NMOS devices, thereby enabling a better diffusion of the p-type dopant into the source and drain regions of the PMOS device without affecting the performance of the NMOS device.