Abstract:
A small unmanned airplane includes; a main wing having a camber airfoil whose under surface is approximately flat, narrowing in the shape of taper to a blade tip, leading edge of which holds sweepback angle, of flying wing type which has an aerodynamic surface of tailless wing type and is low aspect ratio; movable flaps extending approximately extreme breadth in trailing edge part of both left and right sides of the main wing, having a dihedral angle at least in level flight; vertical stabilizers placed at blade tips of left and right of the main wing; and two propellers installed on the top surface of the main wing. This can materialize miniaturization and weight saving of a small unmanned airplane for individual carrying capability and for suitability for such as lift-off by hand throw.
Abstract:
Methods and apparatuses for supporting aircraft components, including actuators are disclosed. An apparatus in accordance with one embodiment of the invention includes an actuator housing having an actuator receptacle that securely yet releasably receives an actuator. The actuator receptacle can include conformal walls that conform at least in part to the shape of the actuator and can accordingly squeeze the actuator and properly align the actuator. At least one of the actuator walls can further include a projection that is releasably received in a corresponding recess of the actuator. One of both of these features can releasably secure the actuator relative to the aircraft, reducing and/or eliminating the likelihood that the actuator will be misaligned and/or mispositioned relative to the aircraft during installation and/or replacement.
Abstract:
An in-flight refueling system for an unmanned aircraft is responsive to sensed forces acting on a refueling receptacle of the aircraft by a separate refueling probe, to control movements of the aircraft as it is being refueled to reduce the magnitude of the sensed forces and thereby maintain the coupling of the aircraft with the refueling probe.
Abstract:
Apparatuses and methods for controlling the motion of a propeller blade are disclosed. In one embodiment, the apparatus can include a first motor that rotates a propeller about a first axis with a first shaft. A first signal transmission portion, fixed relative to the first motor, can transmit signals to a second signal transmission portion that rotates with the first shaft. A second motor can be carried by the first shaft and can receive signals from the second signal transmission portion. The second motor can drive blades of the propeller about a second axis generally transverse to the first axis via a second shaft to vary the pitch of the blades.
Abstract:
A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.
Abstract:
A span-loaded, highly flexible flying wing, having horizontal control surfaces mounted aft of the wing on extended beams to form local pitch-control devices. Each of five spanwise wing segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other wing segments, to minimize inter-segment loads. Wing dihedral is controlled by separately controlling the local pitch-control devices consisting of a control surface on a boom, such that inboard and outboard wing segment pitch changes relative to each other, and thus relative inboard and outboard lift is varied.
Abstract:
One variation of a method for imaging an area of interest includes: within a user interface, receiving a selection for a set of interest points on a digital map of a physical area and receiving a selection for a resolution of a geospatial map; identifying a ground area corresponding to the set of interest points for imaging during a mission; generating a flight path over the ground area for execution by an unmanned aerial vehicle during the mission; setting an altitude for the unmanned aerial vehicle along the flight path based on the selection for the resolution of the geospatial map and an optical system arranged within the unmanned aerial vehicle; setting a geospatial accuracy requirement for the mission based on the selection for the mission type; and assembling a set of images captured by the unmanned aerial vehicle during the mission into the geospatial map.
Abstract:
A flying machine disclosed in the present application includes a main body, a flying module and a function module which is for controlling working state of the flying module. The flying module includes at least one pair of flying units, wherein the flying unit includes a flying frame, rotors and a steering oar which works with the rotors to propel the flying machine. Compared with the conventional flying machine which requires four rotors, while loaded with the same power source, the present flying machine doubles the flight time, which solve the problem of short working time.
Abstract:
A drone package receiving system is provided, utilizing a package-to-receiver system coupler that mates to a receiver pole. The coupler is attached to the drone package and “clips” onto the receiver pole to secure the package from the drone. The receiver pole is affixed to receptacle that is at a “customer-side” end of the pole, wherein the package is translated from the pole's end into the receptacle for safe and hands-free delivery to the customer.
Abstract:
A MEUV that is able to navigate aerial, aquatic, and terrestrial environments through the use of different mission mobility attachments is disclosed. The attachments allow the MEUV to be deployed from the air or through the water prior to any terrestrial navigation. The mobility attachments can be removed or detached by and from the vehicle during a mission.