Abstract:
Methods, apparatuses, and systems are disclosed for a transducer. The transducer can include a bottom plate formed from a first sheet of material, a top plate formed from a second sheet of material, and a middle portion. The middle portion includes a mid-upper element formed from a third sheet of material, with a mid-upper frame, a mid-upper mass, and a plurality of mid-upper attachment members coupling the mid-upper mass to the mid-upper frame. The middle portion can also include a central element formed from a fourth sheet of material, with the central element having a central frame and a central mass.
Abstract:
A high sensitivity structural health monitoring network includes a plurality of sensor nodes disposed apart from each other and communicating through one or more sensor channels. The nodes include smart sensor circuit boards with an interface to a wireless smart sensor board platform, a multi-axis accelerometer having a measurement range and resolution set to provide sensitivity to measure ambient structural vibrations an analog to digital converter for converting signals that includes a plurality of individual channels being individually programmable for signal conditioning for providing data to the interface. A network framework provides network services including a time synchronization service with network-wide global timestamps for sensor data and a unified sensing service that supports collection of data for all sensor channels from all nodes together with a single set of associated time stamps.
Abstract:
A sensor structure includes a substrate having a main extension plane, a first seismic mass and a second seismic mass, the first and the second seismic masses being deflectable relative to the substrate along a direction of deflection essentially perpendicular to the main extension plane. The first and second seismic masses are coupled together via a rigid coupling rocker pivotable around a rocker axis parallel to the main extension plane. The first seismic mass is suspended from the substrate with the aid of a first suspension spring, and an essentially rigid first coupling bar is situated between the first suspension spring and the first seismic mass.
Abstract:
The invention relates to a seismic node (100), comprising at least one seismic sensor with associated electronics, a primary oscillator (106) for timing sensor signals, a reference oscillator (104), a memory, a power source, a switch (102) for turning the reference oscillator on and off, and a processor (112) for digitizing sensor signals and storing them in the memory, calibrating a frequency of the primary oscillator (106) based on the frequency of the reference oscillator (104), and turning the reference oscillator on and off.
Abstract:
A streamer for seismic prospection comprising directional sensors (20), such as geophones or accelerometers, distributed along the streamer, characterized in that said streamer comprises at least two tilt sensors (30, 40) located in remote positions and in locations distant from the directional sensors (20) and means which determined the effective orientation of each directional sensor (20) by interpolating along the streamer the tilt detected by the two tilt sensors (30, 40).
Abstract:
Apparatus, systems and methods associated with a pressure-balanced seismic sensor package are disclosed. One example of an apparatus can include a plurality of optical components, a sensor box enclosing the plurality of optical components, and a lid for the sensor box. The plurality of optical components, the sensor box, and the lid form a pressure-balanced seismic sensor package.
Abstract:
A stress-relief device is provided, which is configured for being mounted on a geophysical equipment or node connected to at least two cables. The device includes a case configured for surrounding the geophysical equipment or node and for making at least an opening for enabling a connection between each of the at least two cables and the geophysical equipment or node. The device also includes a housing for housing a portion of each of the two cables, the housing being configured for substantially preventing any movement of said portions of the two cables.
Abstract:
A seismic data acquisition apparatus includes a receiving antenna for receiving synchronization information representative of a remote reference clock signal; a local clock circuit delivering a local clock signal (CLK); a gauging circuit adapted to measure a frequency drift and a phase error of the local clock signal (CLK) in view of the synchronization information; an analog-to-digital converter adapted to provide a series of digital sampled and dated seismic data according to the local clock signal (CLK) and representative of the received seismic signal; and a correcting circuit configured to provide corrected series of digital sampled and dated seismic data based at least on the measured frequency drift and phase error.
Abstract:
Disclosed is an optical seismic sensor system for measuring seismic events in a geological formation, including a surface unit for generating and processing an optical signal, and a sensor device optically connected to the surface unit for receiving the optical signal over an optical conduit. The sensor device includes at least one sensor head for sensing a seismic disturbance from at least one direction during a deployment of the sensor device within a borehole of the geological formation. The sensor head includes a frame and a reference mass attached to the frame via at least one flexure, such that movement of the reference mass relative to the frame is constrained to a single predetermined path.
Abstract:
A smart sensor circuit board comprises an interface to a wireless smart sensor board platform, a multi-axis accelerometer having a measurement range and resolution set to provide sensitivity to measure ambient structural vibrations resulting from non-catastrophic routine environmental factors, an analog to digital converter (ADC) for converting signals from the multi-axis accelerometer having a plurality of individual channels including oversampling, filtering, and decimation, and each channel being individually programmable for gain, anti-aliasing, cut-off frequency, sampling, and frequency providing data to the interface, and a low noise and high sensitivity amplifier having the plurality of individual channels to receive signals from the multi-axis accelerometer.