Abstract:
A light refraction controlling panel, a 3D-display, and a method of operating a 3D-display are provided. The light refraction controlling panel includes a transparent substrate, a barrier wall on the transparent substrate, first to fourth electrodes on the barrier wall, the first to fourth electrodes being separated from each other, an electro-wetting prism within the barrier wall, the electro-wetting prism being configured to refract incident light to a desired direction, and an isolation layer between the barrier wall and the first to fourth electrodes, and the electro-wetting prism. One electrode of two adjacent electrodes of the first to fourth electrodes is inside an other electrode of the two adjacent electrodes.
Abstract:
An example embodiment relates to a method of manufacturing an array of electric devices that includes attaching a platform including a micro-channel structure to a substrate. The method includes injecting first and second solutions into the micro-channel structure to form at least three liquid film columns, where the first and second solutions include different solvent composition ratios and the liquid columns each, respectfully, include different solvent composition ratios. The method further includes detaching the platform the substrate, removing solvent from the liquid film columns to form thin film columns, and treating the thin film columns under different conditions along a length direction of the thin film columns. The solvent is removed from the thin film columns and the thin film columns are treated under different conditions along a length direction of the thin film columns.
Abstract:
A solution composition for forming an oxide thin film may include a first compound including zinc, a second compound including indium, and a third compound including magnesium or hafnium, and an electronic device may include an oxide semiconductor including zinc, indium, and magnesium. The zinc and hafnium may be included at an atomic ratio of about 1:0.01 to about 1:1.
Abstract:
Disclosed herein is an organosilicon nanocluster, wherein a silicon cluster is substituted with a conductive organic material, a silicon thin film including the same, a thin film transistor including the silicon thin film, a display device including the thin film transistor, and methods of forming the same. The organosilicon nanocluster may more easily and efficiently form a thin film while maintaining electrical characteristics of an amorphous silicon thin film.
Abstract:
Disclosed herein are methods of making a negative pattern of carbon nanotubes or a polymerized carbon nanotube composite having an interpenetrating polymer network (IPN) by modifying the surfaces of the carbon nanotubes with polymerizable functional groups such as oxirane and anhydride groups and subjecting the surface-modified carbon nanotubes either to a photolithography process or to a heatcuring process. By virtue of the present invention, desired patterns of carbon nanotubes can be easily made on the surfaces of various substrates, and polymerized carbon nanotube composites improved in hardening properties can be made without additional polymers.
Abstract:
An organic light-emitting display device includes a plurality of first and second electrodes which are spaced apart from each other on a substrate, a plurality of light-emitting layers between the first and second electrodes, a flexible thin encapsulation film on the second electrodes, and a color filter on the flexible thin encapsulation film.
Abstract:
An exemplary organic semiconductor copolymer includes a polymeric repeat structure having a polythiophene structure and an electron accepting unit. The electron accepting unit has at least one electron-accepting heteroaromatic structure with at least one electron-withdrawing imine nitrogen in the heteroaromatic structure or a thiophene-arylene comprising a C2-30 heteroaromatic structure. Methods of synthesis and electronic devices incorporating the disclosed organic semiconductors, e.g., as a channel layer, are also disclosed.
Abstract:
Disclosed is a thin film transistor (TFT). The TFT may include an intermediate layer between a channel and a source and drain. An increased off current, which may occur to a drain area of the TFT, is reduced due to the intermediate layer. Accordingly, the TFT may be stably driven.
Abstract:
Transistors, methods of manufacturing the transistors, and electronic devices including the transistors. The transistor may include an oxide channel layer having a multi-layer structure. The channel layer may include a first layer and a second layer that are sequentially arranged from a gate insulation layer. The first layer may be a conductor, and the second layer may be a semiconductor having a lower electrical conductivity than that of the first layer. The first layer may become a depletion region according to a gate voltage condition.
Abstract:
Example embodiments relate to an organic semiconductor polymer, in which fused thiophenes having liquid crystal properties and aromatic compounds having N-type semiconductor properties are alternately included in the main chain of the polymer, an organic active layer, an organic thin film transistor (OTFT), and an electronic device including the same, and methods of preparing the organic semiconductor polymer, and fabricating the organic active layer, the OTFT and the electronic device using the same. This organic semiconductor polymer has improved organic solvent solubility, processability, and thin film properties, and may impart increased charge mobility and decreased off-state leakage current when applied to the channel layer of the organic thin film transistor.