Abstract:
The present invention relates to a new process for providing a coating layer on a moulded article comprising fibers. In the present invention, a coating dispersion is prepared that comprises microfibrillated cellulose (MFC), a slip aid and at least one hydrocolloid.
Abstract:
The invention relates to methods of producing microfibrillated cellulose (MFC). According to the invention a fibrous pulp suspension is fibrillated mechanically at a consistency of less than 12.5%, dewatered to raise the consistency of the fibrillated suspension to at least 12.5%, and then subjected in the dewatered condition to further fibrillation. Alternatively an initially fibrillated fibrous pulp suspension may be dewatered and fibrillated in the dewatered condition, after which these dewatering and fibrillating steps are repeated one or more times so that pulp consistency is increased for each fibrillation step. The goals of raising the consistency between subsequent fibrillations are energy saving and an increased aspect ratio in MFC. The invention even comprises uses of the MFC product, e.g. as an additive for papermaking furnish or injection molded plastic composites.
Abstract:
The present invention relates to a ground cover in the form of a mulch, comprising a microfibrillated polysaccharide. Also methods for its manufacture and use thereof are disclosed.
Abstract:
The present invention relates to a process for purifying, such as salt/ion depletion, and/or ash reduction,and/or sulphur removal, and/or free sugar depletion,and/or VOC depletion or fractionating,preferably by using dewatering, of a slurry comprising a lignin or lignin derivative or a combination thereof. A lignin or lignin derivative obtainable from said process and uses thereof are also disclosed.
Abstract:
A method for the production of a composite material comprising nanofibrillated polysaccharide, the method comprising the following steps: (i) providing a liquid suspension of the nanofibrillated polysaccharide; (ii) bringing said liquid suspension in contact with at least one additive, thereby forming a composite material suspension, wherein the composite comprises the nanofibrillated polysaccharide and the at least one additive, (iii) increasing the solid contents of said composite material suspension, thereby forming a high solid contents composite material suspension.
Abstract:
The invention refers to a method to produce a packaging material comprising the steps of; treating at least one surface of a paperboard substrate with a binder and with a metal salt, printing at least a part of said treated surface with ink, and applying at least one polymer layer on said printed surface. The packaging material produced in accordance with the invention shows good printability and simultaneously good adhesion of the applied polymer layer.
Abstract:
The present invention is directed to a process for manufacturing a nano-coated pulp-based substrate comprising the steps of: a) providing a suspension comprising pulp, said pulp having Schopper Riegler value of at least 70°; b) using the suspension of step a) to form a wet web; c) dewatering and/or drying the wet web to form a substrate; d) adding a first layer of an acrylic monomer solution comprising less than 2 wt-% water to the surface of the substrate, followed by radiation curing the first layer; e) optionally adding a second layer comprising an acrylic monomer solution to the surface of the cured first layer and radiation curing the second layer; f) providing a nano-coating on the surface of the cured first or second layer such that a nano-coating having a thickness in the range of from 0.1 nm to 100 nm is provided on the substrate.
Abstract:
The invention relates to a method to produce a linerboard exhibiting a high bending resistance and a high compression strength, which in turn provides high resistance to interflute buckling and sagging in a thereof formed corrugated board. This is achieved by the inventive combination of an optimized fiber refining level of the furnish in each layer of the linerboard, the separate formation of the top layer and the use of a multi-layer headbox to form the two-layered ply. In addition, the linerboard made according to the invention provides good printing properties in a thereof produced corrugated board, especially in flexographic printing, without the fluting structure being negatively affected.
Abstract:
The present invention relates to a method for manufacturing a purified fiber fraction from used beverage carton (UBC), said method comprising the steps: a) subjecting UBC starting material to a polymer and aluminum film separation method to obtain a UBC polymer and aluminum fraction and a raw UBC fiber fraction; b) optionally subjecting the raw UBC fiber fraction to a coarse screening method to remove coarse particles; c) subjecting the raw UBC fiber fraction to a fine screening method to remove cellulose fines and fine particulate contaminants, wherein the fine screening method comprises at least one fine screening step and at least one washing step; d) optionally subjecting the fine screened UBC fiber fraction to a washing method to remove further contaminants; e) optionally subjecting the fine screened UBC fiber fraction to a bleaching method; f) subjecting the fine screened, and optionally bleached, UBC fiber fraction to a dewatering method to a consistency of at least wt %; and g) subjecting the dewatered UBC fiber fraction to deactivation to obtain a purified 20 UBC fiber fraction.
Abstract:
The present invention relates to food or liquid packaging laminate comprising fibers obtained from used beverage cartons (UBC), said food or liquid packaging laminate comprising: a paperboard layer, and a barrier layer, wherein said paperboard layer comprises no or substantially no fibers obtained from UBC, wherein said barrier layer comprises a substrate layer comprising a highly refined cellulose composition comprising fibers obtained from UBC, and a polymeric gas barrier coating disposed on at least one side of the substrate layer, and wherein said barrier layer is laminated to said paperboard layer by a polymeric sealing layer arranged between said paperboard layer and said barrier layer.