Abstract:
A polysilicon layer is formed over a substrate. The polysilicon layer is etched to form a dummy gate electrode having a top portion with a first lateral dimension and a bottom portion with a second lateral dimension. The first lateral dimension is greater than, or equal to, the second lateral dimension. The dummy gate electrode is replaced with a metal gate electrode.
Abstract:
Embodiments of a photoresist supply system including a photoresist nozzle device are provided. The photoresist nozzle device includes a tube including a first segment, a curved segment connected to the first segment, and a second segment connected to the curved segment. The photoresist nozzle device also includes a nozzle connected to the second segment.
Abstract:
A physical vapor deposition (PVD) chamber, a process kit of a PVD chamber and a method of fabricating a process kit of a PVD chamber are provided. In various embodiments, the PVD chamber includes a sputtering target, a power supply, a process kit, and a substrate support. The sputtering target has a sputtering surface that is in contact with a process region. The power supply is electrically connected to the sputtering target. The process kit has an inner surface at least partially enclosing the process region, and a liner layer disposed on the inner surface. The substrate support has a substrate receiving surface, wherein the liner layer disposed on the inner surface of the process kit has a surface roughness (Rz), and the surface roughness (Rz) is substantially in a range of 50-200 μm.
Abstract:
The metal-oxide semiconductor structure includes a substrate, a gate dielectric multi-layer, an etch stop layer, a work function metallic layer, a barrier layer and a silicide layer. The substrate has a trench. The gate dielectric multi-layer overlies the trench, in which the gate dielectric multi-layer includes a high-k capping layer with a fluorine concentration substantially in a range from 1 at % to 10 at %. The etch stop layer is disposed on the gate dielectric multi-layer. The work function metallic layer is disposed on the etch stop layer. The barrier layer is disposed on the work function metallic layer. The silicide layer is disposed on the barrier layer.
Abstract:
A method for fabricating a semiconductor structure and a solid precursor delivery system for a semiconductor fabrication is provided, the method including: providing a solid precursor having a first average particle size; solving the solid precursor in an organic solvent into an intermediate; recrystallizing the intermediate to form solid granules, wherein the solid granules has a second average particle size larger than the first average particle size; vaporizing the solid granules to form a film-forming gas; and depositing the film-forming gas on a substrate to form a resistance film.
Abstract:
A planarization method is provided. The planarization method includes providing a wafer, in which the wafer includes a work function layer, a surface layer formed on the work function layer and oxidized from the work function layer, and a planarization layer disposed on or above the surface layer, performing a chemical-mechanical planarization (CMP) process on the planarization layer, providing an incident light to a surface of the wafer under the CMP process, detecting absorption of the incident light by the surface layer; and stopping the CMP process in response to an increase in the detected absorption of the incident light.