Abstract:
An electronic device may include a switching converter configured to convert an input voltage to an output voltage, and being selectively operable in a pulse skipping mode based upon a control signal. The switching converter may include a comparator having a first input configured to receive an error signal, a second input configured to receive a skipping mode reference signal, and an output configured to generate the control signal. A reference generator may be configured to generate the skipping mode reference signal as a function of a difference between the output voltage and the input voltage.
Abstract:
A low dropout amplifier may include an error amplifier having first and second inputs coupled to a reference signal and a feedback signal, respectively. The error amplifier may be configured to generate first and second error signals at first and second outputs, respectively, with the first and second error signals based upon a difference between the reference signal and the feedback signal. A sink stage may be coupled to the first output and configured to generate a sink current based upon the first error signal. A source stage may be coupled to the second output and configured to generate a source current based upon the second error signal. An output node may be coupled to receive the sink and source currents.
Abstract:
A clamping circuit for a class AB amplifier includes a reference voltage circuit, four NPN Darlington transistors having inputs coupled to the reference voltage circuit, and outputs for providing four clamped voltages and a split NPN Darlington transistor having an input coupled to the reference voltage circuit, and four separate outputs for providing four AC ground voltages.
Abstract:
A class-D audio amplifier incorporates an overcurrent protection scheme implementing two overcurrent thresholds to avoid a dynamic impedance drop. When output current reaches the first threshold as a result of an impedance drop across the speaker, the overcurrent protection circuitry limits the output current to the value of the first threshold, but does not shut down the circuit. The second threshold is used to detect an overcurrent condition to shut down the circuit. Current limiting logic of a first channel monitors the overcurrent condition of a second channel and controls the first channel output in response thereto. This permits the second channel output current to reach the second threshold if the circuit is experiencing a short-circuit condition. This scheme also allows the output current to drop below the first threshold if the overcurrent condition of the second channel is caused by an impedance drop across the output speaker.
Abstract:
A power amplifier includes a clamping circuit configured to provide a clamped voltage from a power supply; an amplifier pair having first inputs coupled to the clamping circuit, second inputs and an output for providing an amplified signal; and a biasing circuit coupled between the clamping circuit and the second inputs. The biasing circuit is configured to adjust input bias voltages of the amplifier pair such that the bias voltage of the output of the amplifier pair varies proportionally to a change of the power supply.
Abstract:
A failure diagnosis circuit includes a multiplexer and a controller. The multiplexer receives address signals, and selectively outputs one of the address signals to an addressable module in response to a selecting signal. The controller generates a first one of address signals and the selecting signal. A built-in self-test circuit generates the second address signal. The addressable module includes addressable components responsive to the address signal. The controller processes the output of the addressable module responsive to the address signal to make a failure diagnosis. The built-in self-test circuit performs signature analysis on the read out output of the addressable module.
Abstract:
A method of operating a speaker system including a speaker coupled to an amplifier, and a dedicated digital speaker protection circuit includes turning on the amplifier in a mute mode, after a first delay period, issuing a play command to the amplifier to place the amplifier in a play mode, but without an input signal during a second delay period, and performing a speaker offset detection during the second delay period, wherein, if there is an offset, then the amplifier is forced back into the mute mode, and if there is no offset, then the amplifier is allowed to continue to operate in the play mode. The method also includes issuing a speaker protection control signal or command if an offset is detected.
Abstract:
An imaging device may include a housing, an image sensor IC in the housing, a lens adjacent the image sensor IC, and a cap over the lens and having an adhesive filling opening therein. The cap, the housing, and the lens may define an adhesive receiving cavity therein and in communication with the adhesive filling opening. The imaging device may also include adhesive material within the adhesive receiving cavity touching the cap, the housing, and the lens.
Abstract:
An amplifier circuit includes an input terminal and an output terminal. A current sinking transistor includes a first conduction terminal coupled to the output terminal and a second conduction terminal coupled to a reference supply node. A voltage sensing circuit has a first input coupled to the input terminal and a second input coupled to the output terminal. An output of the voltage sensing circuit is coupled to the control terminal of the current sinking transistor. The voltage sensing circuit functions to sense a rise in the voltage at the output terminal which exceeds the voltage at the input terminal, and respond thereto by activating the current sinking transistor.
Abstract:
A constant-frequency current-mode-controlled boost converter circuit provides slope compensation of an inductor current, reduces reverse inductor current in light output load conditions, and reduces oscillation between a discontinuous current mode and a continuous current mode by enabling or disabling an inductor current threshold. The constant-frequency current-mode-controlled boost converter circuit is efficient and stable in light, medium, and heavy output load conditions.