Abstract:
A switching power converter includes a voltage source that provides an input voltage Vin to an unregulated DC/DC converter stage and at least one buck-boost converter stage to produce a desired output voltage Vout. The unregulated DC/DC converter stage is adapted to provide an isolated voltage to the at least one regulated buck-boost converter stage, wherein the unregulated DC/DC converter stage comprises a transformer having a primary winding and at least one secondary winding and at least one switching element coupled to the primary winding. The at least one buck-boost converter stage is arranged to operate in a buck mode, boost mode or buck-boost mode in response to a mode selection signal from a mode selection module. By influencing the pulse width modulation output power controller the at least one buck-boost converter stage is arranged to produce one or multiple output voltages.
Abstract:
A method for detecting a preamble in a received radio signal comprises demodulating a received radio signal based on a carrier derived from a local timing source to provide a digital signal comprising a sequence of bits oscillating at approximately a modulated data rate. A bit width of each successive bit of the digital signal is determined. If a pair of consecutive bit widths have a combined width within a threshold value, the bit pair is indicated as potentially belonging to a preamble. If a threshold number of potential preamble bit pairs in a sequence of bit pairs within a given window is detected, the sequence of bit pairs is indicated as potentially comprising a preamble. A measure of bit widths of at least some bits within a sequence of preamble bit pairs can be provided and a frequency of the local timing source can be adjusted according to said measure.
Abstract:
A low-cost system comprising a pattern arranged to encode information and a decoder for decoding the information encoded in the pattern is described. In particular, the mechanism employs a capacitive sensing technique. Electrodes are arranged (or stimulated, during operation) to each generate an electric field, and sense disturbances on the electric field caused by the pattern when the pattern is positioned over the electrodes. The spatial arrangement of the pattern allows information to be encoded on a strip or surface and decoded by capacitive sensors arranged to detect disturbances caused by possible patterns. The resulting solution is cheaper and less complex than optical solutions, e.g., barcodes and optical barcode readers. The mechanism may be used in a glucose meter for encoding and decoding an identifier for distinguishing batches of glucose meter test strips.
Abstract:
An exemplary object detection method includes generating feature block components representing an image frame, and analyzing the image frame using the feature block components. For each feature block row of the image frame, feature block components associated with the feature block row are evaluated to determine a partial vector dot product for detector windows that overlap a portion of the image frame including the feature block row, such that each detector window has an associated group of partial vector dot products. The method can include determining a vector dot product associated with each detector window based on the associated group of partial vector dot products, and classifying an image frame portion corresponding with each detector window as an object or non-object based on the vector dot product. Each feature block component can be moved from external memory to internal memory once implementing the exemplary object detection method.
Abstract:
A stress shield for a plastic integrated circuit package is disclosed. A shield plate is attached by an adhesive to a top surface of an integrated circuit die such that the shield plate covers less than all of the top surface and leaves bond pads exposed. A molding material is applied over the shield plate and the integrated circuit die. The shield plate shields the integrated circuit die from stresses imparted by the molding material.
Abstract:
The present disclosure describes an improved multi-stage noise shaping (MASH) analog-to-digital converter (ADC) for converting an analog input signal to a digital output signal. In particular, a full delta-sigma (ΔΣ) modulator is provided at the front-end of the MASH ADC, and another full ΔΣ modulator is provided at the back-end of the MASH ADC. The front-end ΔΣ modulator digitizes an analog input signal, and the back-end ΔΣ modulator digitizes an error between the output of the front-end ΔΣ modulator and the (original) analog input signal. In this configuration where the back-end modulator digitizes the error of the (full) front-end modulator, some design constraints of the front-end are relaxed. These design constraints include thermal noise, digital noise cancellation filter complexity (the quantization noise of the front-end is already shaped by the noise transfer function of the front-end), and/or non-linearity.
Abstract:
An apparatus comprises a power converter circuit and a control circuit. The power converter circuit includes a primary circuit side and a secondary circuit side. The primary circuit side includes a plurality of primary switches, and the secondary circuit side includes a plurality of synchronous rectifiers and an inductor. The control circuit is configured to operate the synchronous rectifiers synchronously with the primary switches when inductor current at the inductor is greater than or equal to a reference inductor current, and operate the synchronous rectifiers in a bidirectional mode when the inductor current is less than the reference inductor current, wherein energy is delivered from the primary side to the secondary side and from the secondary side to the primary side during the bidirectional mode.
Abstract:
An integrated circuit includes a component calculator configured to compute at least one component value of a highly programmable analog-to-digital converter (ADC) from at least one application parameter, and a mapping module configured to map the component value to a corresponding register setting of the ADC based on at least one process parameter, wherein the integrated circuit produces digital control signals capable of programming the ADC. In a specific embodiment, the component calculator uses an algebraic function of a normalized representation of the application parameter to approximately evaluate at least one normalized ADC coefficient. The component value is further calculated by denormalizing the normalized ADC coefficient. In another specific embodiment, the component calculator uses an algebraic function of the application parameter to calculate the component value. In some embodiments, the integrated circuit further includes a scaling module configured to scale the component value based on scaling parameters.
Abstract:
A root-mean-square (RMS) detector includes detection circuitry having as an input a radio frequency signal, target voltage and a set voltage and a RMS signal as an output, and a gain stage within the detection circuitry to produce the RMS signal as an output. The gain stage provides for faster settling times of the detector.
Abstract:
An apparatus includes a processing unit that divides an overlay buffer into a plurality of macro blocks, draws a graphic primitive object including a plurality of pixels, identifies one of the plurality of macro blocks upon a determination that the plurality of pixels has crossed a boundary of the one of the plurality of macro blocks, and image processes the one of the plurality of macro blocks.