Method and system for generating a saw-tooth signal with fast fly back interval

    公开(公告)号:US10530373B1

    公开(公告)日:2020-01-07

    申请号:US16428975

    申请日:2019-06-01

    Abstract: A transceiver includes a frequency modulation continuous wave generator to generate a frequency sequence and a digital phase locked loop to generate a waveform based on the frequency sequence. The digital phase locked loop includes a plurality of control registers. A main controller captures a reference state defined in the plurality of configuration registers prior to the frequency sequence, initiates the frequency sequence, restores the reference state of the configuration registers after completion of the frequency sequence, and repeats the frequency sequence after restoring the reference state.

    Methods, apparatus, and system for forming epitaxial formations with reduced risk of merging

    公开(公告)号:US10529831B1

    公开(公告)日:2020-01-07

    申请号:US16054881

    申请日:2018-08-03

    Abstract: At least one method, apparatus and system providing semiconductor devices comprising a semiconductor substrate; a first fin and a second fin on the semiconductor substrate; a first epitaxial formation on the first fin and having an inner surface oriented toward the second fin and an outer surface oriented away from the second fin; a second epitaxial formation on the second fin and having an inner surface oriented toward the first fin and an outer surface oriented away from the first fin; and a conformal dielectric layer on at least portions of the inner and outer surfaces of the first epitaxial formation, on at least portions of the inner and outer surfaces of the first epitaxial formation and the second epitaxial formation, and merged between the inner surface of the first epitaxial formation and inner surface of the second epitaxial formation.

    SELF ALIGNED BURIED POWER RAIL
    133.
    发明申请

    公开(公告)号:US20200006112A1

    公开(公告)日:2020-01-02

    申请号:US16568902

    申请日:2019-09-12

    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to self-aligned buried power rail structures and methods of manufacture. The method includes: forming at least one fin structure of a first dimension in a substrate; forming at least one fin structure of a second dimension in the substrate; removing at least a portion of the at least one fin structure of the second dimension to form a trench; filling the trench with conductive metal to form a buried power rail structure within the trench; and forming a contact to the buried power rail structure.

    PHOTOLITHOGRAPHY METHODS AND STRUCTURES THAT REDUCE STOCHASTIC DEFECTS

    公开(公告)号:US20200004155A1

    公开(公告)日:2020-01-02

    申请号:US16022752

    申请日:2018-06-29

    Abstract: Disclosed are embodiments of a multi-layer stack and photolithography methods and systems that employ such a stack. The disclosed multi-layer stacks include a photoresist layer on an underlayer. The photoresist layer and underlayer are made of different materials, which are selected so that valence and conduction band offsets between the underlayer and photoresist layer create an effective electric field (i.e., so that the stack is “self-biased”). When areas of the photoresist layer are exposed to radiation during photolithography and the radiation passes through photoresist layer and excites electrons in the underlayer, this effective electric field facilitates movement of the radiation-excited electrons from the underlayer into the radiation-exposed areas of the photoresist layer in a direction normal to the interface between the underlayer and the photoresist layer. Movement of the radiation-excited electrons from the underlayer into the radiation-exposed areas of the photoresist layer improves photoresist layer development and pattern resolution.

    Using source/drain contact cap during gate cut

    公开(公告)号:US10522538B1

    公开(公告)日:2019-12-31

    申请号:US16032108

    申请日:2018-07-11

    Abstract: Parallel fins are formed (in a first orientation), and source/drain structures are formed in or on the fins, where channel regions of the fins are between the source/drain structures. Parallel gate structures are formed to intersect the fins (in a second orientation perpendicular to the first orientation), source/drain contacts are formed on source/drain structures that are on opposite sides of the gate structures, and caps are formed on the source/drain contacts. After forming the caps, a gate cut structure is formed interrupting the portion of the gate structure that extends between adjacent fins. The upper portion of the gate cut structure includes extensions, where a first extension extends into one of the caps on a first side of the gate cut structure, and a second extension extends into the inter-gate insulator on a second side of the gate cut structure.

    Performing concurrent diffusion break, gate and source/drain contact cut etch processes

    公开(公告)号:US10522410B2

    公开(公告)日:2019-12-31

    申请号:US15958593

    申请日:2018-04-20

    Abstract: A device is formed including fins formed above a substrate, an isolation structure between the fins, a plurality of structures defining gate cavities, and a first dielectric material positioned between the structures. A patterning layer above the first dielectric material and in the gate cavities has a first opening positioned above a first gate cavity exposing a portion of the isolation structure and defining a first recess, a second opening above a second gate cavity exposing a first portion of the fins, and a third opening above a first portion of a source/drain region in the fins to expose the first dielectric material. Using the patterning layer, a second recess is formed in the substrate and a third recess is defined in the first dielectric material. A second dielectric material is formed in the recesses to define a gate cut structure, a diffusion break structure, and a contact cut structure.

    METHODS OF FORMING GATE CONTACT OVER ACTIVE REGION FOR VERTICAL FINFET, AND STRUCTURES FORMED THEREBY

    公开(公告)号:US20190393342A1

    公开(公告)日:2019-12-26

    申请号:US16018970

    申请日:2018-06-26

    Abstract: Methods of making a vertical FinFET device having an electrical path over a gate contact landing, and the resulting device including a substrate having a bottom S/D layer thereover and fins extending vertically therefrom; a bottom spacer layer over the bottom S/D layer; a HKMG layer over the bottom spacer layer; a top spacer layer over the HKMG layer; a top S/D layer on top of each fin; top S/D contacts formed over the top S/D layer; an upper ILD layer present in spaces around the top S/D contacts; an isolation dielectric within a portion of a recess of top S/D contacts located above adjacent fins; a gate contact landing within a remaining portion of the recess; a gate contact extending vertically from a bottom surface of the gate contact landing and contacting a portion of the HKMG layer; and an electrical path over at least the gate contact landing.

    METHOD FOR FORMING REPLACEMENT AIR GAP
    138.
    发明申请

    公开(公告)号:US20190393335A1

    公开(公告)日:2019-12-26

    申请号:US16016828

    申请日:2018-06-25

    Abstract: A method of forming transistor devices with an air gap in the replacement gate structure is disclosed including forming a placeholder gate structure above a semiconductor material region, forming a sidewall spacer adjacent the placeholder gate structure, removing the placeholder gate structure to define a gate cavity bounded by the sidewall spacer, forming a gate insulation layer in the gate cavity, the gate insulation layer including a first portion having a first thickness and a second portion having a second thickness greater than the first thickness, forming a gate electrode in the gate cavity above the gate insulation layer, removing at least a portion of the second portion of the gate insulation layer to define an air gap cavity adjacent the gate electrode, and forming a first gate cap layer above the gate electrode, wherein the first gate cap layer seals an upper end of the air gap cavity.

    DIFFERENT UPPER AND LOWER SPACERS FOR CONTACT
    139.
    发明申请

    公开(公告)号:US20190393321A1

    公开(公告)日:2019-12-26

    申请号:US16014076

    申请日:2018-06-21

    Abstract: Various processes form different structures including exemplary apparatuses that include (among other components) a first layer having channel regions, source/drain structures in the first layer on opposite sides of the channel regions, a gate insulator on the channel region, and a gate stack on the gate insulator. The gate stack can include a gate conductor, and a stack insulator or a gate contact on the gate conductor. The gate stack has lower sidewalls adjacent to the source/drain structures and upper sidewalls distal to the source/drain structures. Further, lower spacers are between the source/drain contacts and the lower sidewalls of the gate stack; and upper spacers between the source/drain contacts and the upper sidewalls of the gate stack. In some structures, the upper spacers can partially overlap the lower spacers.

Patent Agency Ranking