Abstract:
The present disclosure relates to a capacitive element sensor and to a method for manufacturing same. More particularly, the present disclosure relates to a change in total capacitance brought about by the electrical charge of biomolecules attached to an electrode and to a sensor for measuring the change.
Abstract:
A method and device for allocating resources in a multiple frequency band system are disclosed. In a method for detecting a resource indication value (RIV) indicating not only a start index (S) of consecutive virtual resource blocks (VRBs) allocated to a first UE capable of simultaneously receiving information from a plurality of frequency bands, but also a length (L) of the consecutive VRBs, in a wireless mobile communication system capable of using the plurality of frequency bands, the method includes receiving, by the first UE, the RIV, and detecting the RIV, wherein the detected is greater than a maximum value usable as an RIV allocated to a second UE capable of receiving information from only one frequency band.
Abstract:
A method for mapping a physical hybrid automatic repeat request indicator channel (PHICH) is described. The method for mapping a PHICH includes determining an index of a resource element group transmitting a repetitive pattern of the PHICH, according to a ratio of the number of available resource element groups in a symbol in which the PHICH is transmitted and the number of available resource element groups in a first or second OFDM symbol, and mapping the PHICH to the symbol according to the determined index. In transmitting the PHICH, since efficient mapping is performed considering available resource elements varying with OFDM symbols, repetition of the PHICH does not generate interference between neighbor cell IDs and performance is improved.
Abstract:
The present invention relates to a wireless communication system, and more particularly, to a method of uplink transmission, in which a user equipment transmits a signal in uplink in a wireless communication system. The present invention includes switching an uplink transmission mode used in transmitting the signal to a base station to either a first transmission mode or a second transmission mode, generating a plurality of signals to transmit to the base station via a plurality of component carriers (CCs), and transmitting a plurality of the signals to the base station according to the switched uplink transmission mode, wherein the first transmission mode allows multi-carrier characteristics for the signal transmitted via a plurality of the component carriers and wherein the second transmission mode requests single carrier characteristics for the signals transmitted via a plurality of the component carriers.
Abstract:
Heterogeneous nanowires having a core-shell structure consisting of single-crystal apatite as the core and graphitic layers as the shell and a synthesis method thereof are provided. More specifically, provided is a method capable of producing large amounts of heterogeneous nanowires, composed of graphitic shells and apatite cores, in a reproducible manner, by preparing a substrate including an element corresponding to X of X6(YO4)3Z which is a chemical formula for apatite, adding to the substrate a gaseous source containing an element corresponding to Y of the chemical formula, adding thereto a gaseous carbon source, and allowing these reactants to react under optimized synthesis conditions using chemical vapor deposition (CVD), and to a method capable of freely controlling the structure and size of the heterogeneous nanowires and also to heterogeneous nanowires synthesized thereby.
Abstract:
A method for efficiently scheduling virtual resource blocks to physical resource blocks is disclosed. In a wireless mobile communication system, for distributed mapping of consecutively allocated virtual resource blocks to physical resource blocks, when nulls are inserted into a block interleaver used for the mapping, they are uniformly distributed to ND divided groups of the block interleaver, which are equal in number to the number (ND) of physical resource blocks to which one virtual resource block is mapped.
Abstract:
A method for transmitting information of ACK/NACK (Acknowledgement/Negative ACK) sequence from a receiver in a wireless communication system is disclosed. A receiver receives a plurality of data from a transmitter, and determines one ACK/NACK sequence including ACKs/NACKs corresponding to each of the plurality of data. If two or more ACKs are included in the ACK/NACK sequence, the receiver selects a combination of a first HARQ (Hybrid Automatic Repeat reQuest) transmission resource and a first modulation symbol corresponding to a certain ACK of the two or more ACKs, and selects a combination of a second HARQ transmission resource and a second modulation symbol corresponding to ACKs other than the certain ACK of the two or more ACKs. Thus, the receiver transmits each of the first modulation symbol and the second modulation symbol to the transmitter using the first HARQ transmission resource and the second HARQ transmission resource, respectively.
Abstract:
A method of allocating a plurality of data symbols from a transmitting end using multiple carrier modulation (MCM) is disclosed. More specifically, the method includes receiving the plurality of data symbols from a serial-to-parallel converter, grouping the plurality data symbols into at least one data symbol group, wherein the at least one data symbol group is formed by grouping a specified number of neighboring data symbols, and allocating the at least one data symbol group to at least one subcarrier group, wherein the at least one subcarrier group is formed by grouping a plurality of subcarriers.
Abstract:
A method for providing precoding weights for data symbols of data control subframes includes generating a downlink frame having control subframes which individually correspond to one of a plurality of downlink data subframes, and inserting weight information into each of the control subframes, such that the weight information is to be applied to data symbols present in the corresponding one of the data subframes. The method further includes transmitting the control subframes and the inserted weight information to a receiving device.
Abstract:
A method and apparatus of transmitting a reference signal in a wireless communication system is provided. A reference signal sequence is generated by using a pseudo-random sequence. A portion or entirety of the reference signal sequence is mapped to at least one resource block and is transmitted. The pseudo-random sequence is generated by a gold sequence generator which is initialized with initial values obtained by using cell identifier. The reference signal provides low PAPR and high cross correlation characteristic.