Abstract:
A data preserving method and a data accessing method for a non-volatile memory are provided. In the data preserving method, a data is checked according to an error correcting code (ECC) to obtain an error bit number of the data. When the error bit number is greater than a threshold, the data is moved from a first memory unit to a second memory unit and is corrected according to the ECC. Thereby, the data stability of the non-volatile memory is improved.
Abstract:
A connection component generates a user interface for display to a patient computing device. The user interface provides the patient computing device with access to hospital visit records of the patient maintained in a hospital database. The user interface may further receive selection of a care provider by the patient for granting the care provider electronic access to the patient's hospital visit records.
Abstract:
The present invention relates to a data transmission method and system. The system includes a connection module for setting up a transmission path between a computer end and a device end, a display unit, a capture unit disposed at the device end for capturing an image of the screen including an icon, and a computing unit for recognizing the image to determine that the icon corresponding to an object is shown on the image. The method includes the steps of: displaying a screen including an icon at the computer end; capturing an image including an icon of the screen; recognizing the image to determine that the icon corresponding to an object is shown on the image; and transmitting the object from the computer end to the device end through the transmission path. The present invention does not require complicated operation at the computer end and improves convenience for the application.
Abstract:
SRAM writing system and related apparatus are provided. The writing system of the invention has a dummy replica writing circuit, a negative pulse controller and at least a normal writing circuit; each normal writing circuit includes a write driver and a negative pulse supplier. While writing, the dummy replica writing circuit drives a dummy replica bit-line, such that the negative pulse controller generates a negative pulse control signal according to level of the dummy replica bit-line. In each writing circuit, when the write driver conducts to connect an associated bit-line to a bias end for driving a level transition, the negative pulse supplier switches the bias end from an operation voltage to a different negative pulse voltage according to the received negative pulse control signal.
Abstract:
This invention relates to a method of determining the presence of certain HLA alleles, such as HLA-B*1502 or HLA-B*5801, and a kit for carrying out this method. Also disclosed is a method for assessing whether a patient is at risk for developing adverse drug reactions (e.g., Stevens-Johnson syndrome, toxic epidermal necrolysis, or hypersensitivity syndrome) based on the presence or absence of a genetic marker (e.g., HLA-B*1502, HLA-B*5801, or HLA-B*4601).
Abstract:
A chip package structure includes a substrate, a chip, a thermal conductive layer, a plurality of signal contacts, and a molding compound. The substrate includes a plurality of first thermal conductive vias, a connecting circuit, and a plurality of signal vias electrically connected to the connecting circuit, and the substrate has a chip disposing region. The chip is disposed on the chip disposing region of the substrate and electrically connected to the signal vias through the connecting circuit. The thermal conductive layer is disposed over the substrate, connected to the first thermal conductive vias, and located above the chip disposing region. Besides, the thermal conductive layer has first openings exposing the signal vias. The signal contacts are respectively disposed in the first openings and connected to the signal vias. The molding compound encapsulates the chip.
Abstract:
Methods and apparatus for correcting quantization errors in signal reception based on estimated network loading including solutions for preserving cellular network performance in low noise, high interference environments. In one embodiment, a data channel is amplified with respect to other signals based on network load during periods of relatively low network utilization. Dynamic modification of the data channel's power level is configured to overcome quantization errors, rather than the true noise floor (which is insignificant in low noise environments). Such solutions provide both the fidelity necessary to enable high degrees of unwanted signaling rejection, while still preserving data channel quality.
Abstract:
An acoustic system includes a receiver or microphone, a tube, a barrier, and an equalization device. The receiver is capable of outputting an audio signal. The tube is in connection with the receiver and the audio signal travels along a length of the tube. The barrier is fitted along the tube and the barrier prevents moisture from passing along the tube toward the receiver. The barrier causes an amount of damping to the audio signal. The equalization device is in connection with the receiver and the equalization device counteracts the damping by the barrier. The barrier is configured to have a submersion rating greater than or equal to 7 IP.
Abstract:
A communication device with an audio database comprises an audio receiving module, a locator module, an audio identification module and a notification module. The audio receiving module calculates the strength of the at least one signal, the locator module determines whether each of the strength exceeds a predefined value and determines the directionality of the at least one audio signal in accordance with the strength of the at least one audio signal. The audio identification module compares the audio signal with audio modules in accordance with characteristics parameter to issue a warning.
Abstract:
An exemplary LED module includes a ceramic substrate, a heat spreader, a heat sink, an LED die, and a packaging layer. The substrate defines a hole extending therethrough from a top side to a bottom side thereof. The heat spreader is disposed in the hole with a top side thereof substantially coplanar with the top side of the substrate. An outer circumferential surface of the heat spreader contacts an inner circumferential surface of the substrate around the hole. The heat sink is attached to the top sides of the substrate and the heat spreader. The LED die is attached to a bottom side of the heat spreader, and the packaging layer encapsulates the LED die.