Abstract:
The present invention disclose a touch electrode structure and a fabricating method thereof, a capacitive touch device and a touch display device to improve the touch linearity and the report rate of the capacitive touch device. The touch electrode structure provided by the embodiments of the present invention comprises a plurality of electrode assemblies and a plurality of electrode pins for connecting a touch circuit. Wherein, each electrode assembly comprises two electrodes which are disposed at the same layer, insulated from each other and cross with each other complementarily, and each electrode comprises at least two sub-electrodes which are in mutual electrical connection with each other. The sub-electrodes of different electrodes of each electrode assembly are spaced apart from each other one by one, and each electrode is connected with an electrode pin.
Abstract:
A capacitive touch screen and a method for fabricating the same. The capacitive touch screen includes a substrate and a sensor electrode thereon, the sensor electrode includes first electrode groups which are arranged in the row direction and parallel to each other, second electrode groups which are arranged in the column direction and parallel to each other; the first electrode group includes first type of electrodes which are sequentially electrically connected, the second electrode group includes second type of electrodes which are sequentially electrically connected, each of at least one type of electrodes of the first type of electrodes and the second type of electrodes includes a peripheral electrode arranged in the periphery and a central electrode electrically isolated from the peripheral electrode, and peripheral electrodes of two adjacent electrodes of the electrode group including the at least one type of electrodes are electrically connected to each other.
Abstract:
The present invention discloses array substrate, display device and method for controlling refresh rate of an array substrate. The array substrate includes; a plurality of pixel structures each including gate line, data line, common electrode line, first switching element at intersection of the gate line and the data line, pixel electrode, second switching element, and first transparent electrode. Gate, source and drain of the first switching element are connected to the gate line, the date line and the pixel electrode, respectively. Gate, source and drain of the second switching element are connected to second switching controlling line, common electrode signal terminal and the first transparent electrode, respectively. A first storage capacitance is formed between the pixel electrode and the common electrode line and/or between the pixel electrode and the gate line, and a second storage capacitance is formed between the pixel electrode and the first transparent electrode.
Abstract:
An opposed substrate (9′) comprises: a substrate (1); a static electricity protective electrode (2), a bridging electrode (4) and a touch induction electrode (6) comprising a plurality of sub-units sequentially formed on the substrate (1), wherein the distribution of the static electricity protective electrode (2) on the substrate (1) corresponds to dummy regions between sub-units, and the static electricity protective electrode (2), the bridging electrode (4) and the touch induction electrode (6) are insulated from each other. The opposed substrate (9′) has a good touching effect. A method for manufacturing the opposed substrate, and a liquid crystal display touch panel are also disclosed.
Abstract:
The present disclosure provides a waveguide conversion device and wireless communication system. The waveguide conversion device includes: a waveguide cavity including a waveguide transmission cavity and a waveguide back cavity facing each other; a base substrate between the waveguide transmission cavity and the waveguide back cavity, the base substrate including at least a first substrate; and a conversion module on the first substrate and including a balanced antenna, a first differential strip-line and a second differential strip-line, wherein the balanced antenna is in a region where the waveguide transmission cavity faces the waveguide back cavity, the balanced antenna includes a first output port and a second output port; a first end of the first differential strip-line is connected to the first output port of the balanced antenna, and a first end of the second differential strip-line is connected to the second output port of the balanced antenna.
Abstract:
The present disclosure provides a voice interaction system, a voice interaction method, and a smart device. The system includes: a voice interaction unit, a photoelectric sensing unit, and an instruction control unit configured to determine whether the voice interaction unit is in an on state, determine, when the voice interaction unit is in the on state, whether the voice interaction unit receives a target voice instruction within a predetermined time; control, when the target voice instruction is received within the predetermined time, a smart device to perform an action corresponding to the target voice instruction according to the target voice instruction of the user received and identified by the voice interaction unit; and send, when the voice instruction is not received within the predetermined time, a standby instruction to the voice interaction unit.
Abstract:
The present disclosure provides a displaying backplane and a displaying device, and relates to the technical field of displaying. The displaying backplane includes: a substrate base plate; a first active layer and a second active layer that are provided on the substrate base plate, wherein the material of the first active layer and the second active layer is an oxide semiconductor, the first active layer has a first channel region and first no-channel regions, and the second active layer has a second channel region and second no-channel regions; a first grid insulating layer covering the first active layer and the second active layer; and a first grid and a second grid that are provided on the first grid insulating layer; wherein the oxygen-vacancy concentration of the first channel region is greater than the oxygen-vacancy concentrations of the first no-channel regions, the second no-channel regions and the second channel region.
Abstract:
An optical fingerprint sensor is provided. The optical fingerprint sensor includes a backplate structure layer, a pixel defining layer, and an organic photoelectric sensing layer, wherein the pixel defining layer is disposed on a side of the backplate structure layer; and a non-pixel region of the pixel defining layer is provided with a first non-pixel hole, and the organic photoelectric sensing layer is disposed in the first non-pixel hole.
Abstract:
Provided are a touch substrate, a preparation method thereof and a touch device. The touch substrate includes a substrate, and a first conductive layer, a first insulating layer and a second conductive layer sequentially stacked on the substrate. The first conductive layer includes a first capacitive touch electrode, a first wiring and a second wiring. The first wiring is electrically connected to the first capacitive touch electrode, and the second wiring is insulated from the first capacitive touch electrode. The first insulating layer includes at least one first via. The second conductive layer includes a second capacitive touch electrode, which is electrically connected to the second wiring through the first via. The second conductive layer further includes an additional functional channel, which is insulated from the second capacitive touch electrode.
Abstract:
An adhesive film includes an adhesive film body, and a plurality of deformable particles dispersed in the adhesive film body. A volume of each of the plurality of deformable particles is capable of shrinking under a trigger condition.