Abstract:
The present invention discloses a method of forming a slope lateral structure. In this invention, the silicon nitride and the silicon hydroxide with different etching rates are used. Thus, when the silicon nitride is etching, the top and laterals portion of the silicon hydroxide is suffering the slight etching. So that, when the silicon nitride is etched completely, a slope lateral silicon hydroxide is formed, because of the different etching time on the top and the bottom portion of the silicon hydroxide. Using the present invention, the conventional NROM process problem, which the wordlines are connected by the residue on the laterals of the protective layer after etching process can be solved.
Abstract:
A method of removing small particles remaining on a surface of a semiconductor wafer and preventing a silicide layer covering the semiconductor wafer from corroding starts by controlling a temperature of the semiconductor wafer to between room temperature and 45° C. Then, a cleaning solution of a temperature between 0° C. and 45° C. is utilized to clean the semiconductor wafer to effectively remove small particles remaining on the surface of the semiconductor wafer and prevent the silicide layer from corrosion by the cleaning solution. Therein, the cleaning solution is comprised of a pre-determined volume ratio of hydrogen peroxide (H2O2), ammonia (NH4OH), and deionized water.
Abstract translation:通过将半导体晶片的温度控制在室温和45℃之间,去除残留在半导体晶片表面上的小颗粒并防止覆盖半导体晶片的硅化物层腐蚀开始的方法。然后, 使用0℃至45℃之间的温度来清洁半导体晶片以有效地去除残留在半导体晶片表面上的小颗粒,并防止硅化物层被清洁溶液腐蚀。 其中,清洁溶液由预定体积比的过氧化氢(H 2 O 2),氨(NH 4 OH)和去离子水组成。
Abstract:
A portable device can transmit information through one of a mobile phone network and an Internet, wherein the portable device includes a text-based communication module to allow a user may synchronously transmit or receive data through a local area network, wherein the data is text, audio, video or the combination thereof. The text-based communication module of the portable device includes a text-to-speech recognition module used to convert a text data for outputting the text data by vocal, and a read determination module for determining read target terminals and unread target terminals when a user of the portable phone device activates the read determination module.
Abstract:
A system and method for middle layers is provided. In an embodiment the middle layer comprises a floating component in order to form a floating region along a top surface of the middle layer after the middle layer has dispersed. The floating component may be a polymer with a floating group incorporated into the polymer. The floating group may comprise a fluorine atom.
Abstract:
A lithography apparatus generates a tunable magnetic field to facilitate processing of photoresist. The lithography apparatus includes a chamber and a substrate stage in the chamber operable to hold a substrate. A magnetic module provides a magnetic field to the substrate on the substrate stage. The magnetic module is configured to provide the magnetic field in a tunable and alternating configuration with respect to its magnitude and frequency. The magnetic field is provided to have a gradient in magnitude along a Z-axis that is perpendicular to the substrate stage to cause magnetically-charged particles disposed over the substrate stage to move up and down along the Z-axis. The lithography apparatus also includes a radiation energy source and an objective lens configured to receive radiation energy from the radiation energy source and direct the radiation energy toward the substrate positioned on the substrate stage.
Abstract:
A photolithography material is provided. The photolithography material is a surface modifying material. The photolithography material includes a polymer (e.g., fluorine polymer) that includes less than approximately 80% hydroxyl groups. In an embodiment, the photolithography material includes less than approximately 80% fluoro-alcohol functional units. Methods of using the photolithography material include as an additive to a photoresist or topcoat layer. The photolithography material may be used in an immersion lithography process.
Abstract:
Immersion lithography system and method using direction-controlling fluid inlets are described. According to one embodiment of the present disclosure, an immersion lithography apparatus includes a lens assembly having an imaging lens disposed therein and a wafer stage configured to retain a wafer beneath the lens assembly. The apparatus also includes a plurality of direction-controlling fluid inlets disposed adjacent to the lens assembly, each direction-controlling fluid inlet in the plurality of direction-controlling fluid inlets being configured to direct a flow of fluid beneath the lens assembly and being independently controllable with respect to the other fluid inlets in the plurality of direction-controlling fluid inlets.
Abstract:
Methods and materials for making a semiconductor device are described. The method includes providing a substrate, forming a surface-modified middle layer (SM-ML) that includes a fluorine-containing material over the substrate, forming a photoresist layer over the SM-ML, exposing the photoresist layer to an exposure energy, and developing the photoresist layer.
Abstract:
An apparatus includes a chuck, a first drain cup and second drain cup with two separately drain lines connected to each drain cup. The second drain cup is integrated with the first drain cup and located on top of the first drain cup. The different based chemical wastes can be collected into the separated drain cups and furthermore into the different drain lines and waste tanks. Accordingly, different based photo resists and developers can be used at the same apparatus by adjusting the chuck position to save the coating and develop tool and clean room space and furthermore the production cost.
Abstract:
Photosensitive materials and method of forming a pattern that include providing a composition of a component of a photosensitive material that is operable to float to a top region of a layer formed from the photosensitive material. In an example, a photosensitive layer includes a first component having a fluorine atom (e.g., alkyl fluoride group). After forming the photosensitive layer, the first component floats to a top surface of the photosensitive layer. Thereafter, the photosensitive layer is patterned.