Abstract:
For use in a wireless communication network, a transmitter is configured to encode a message field in a control channel message by cyclically shifting the control channel message according to the value of the message field. The transmitter includes a CRC (cyclic redundancy check) encoder configured to encode the control channel message using a cyclic redundancy check. The transmitter may also includes a CIF (carrier indication field) encoder configured to encode a carrier indication value in the control channel message by cyclically shifting the control channel message according to the carrier indication value configured to indicate an intended component carrier of the control channel message. Alternatively, the transmitter may also include a frame timing encoder configured to encode frame timing in the control channel message by cyclically shifting the control channel message according to the frame timing.
Abstract:
A base station is provided. The base station includes a transmit path circuitry that generates a masking sequence to mask a cyclic redundancy check of a control channel information element. The masking sequence includes a 4-bit prefix. The three least significant bits of the 4-bit prefix indicate a message type of the control channel information element. A subscriber station is also provided. The subscriber station includes a receive path circuitry that determines a message type of a control channel information element using a three least significant bits of a 4-bit prefix of a masking sequence used to mask a cyclic redundancy check of the control channel information element.
Abstract:
A wireless communication network capable of providing Enhanced Multi-Broadcast Service (EMBS) to a plurality of subscriber stations. At least one base station in the network transmits a downlink frame to the plurality of subscriber stations. The downlink frame includes an EMBS MAP configured to identify locations of EMBS data bursts. The downlink frame also includes a security and data multiplexing burst and EMBS data burst. A number of the subscriber stations are configured to decode the EMBS MAP to determine the locations of a number of EMBS data burst in a number of subsequent downlink frames.
Abstract:
For use in a wireless network, a femtocell base station in communication with at least one first mobile station is provided. The femtocell base station is configured adjust a resource of the femtocell base station to mitigate interference at a second mobile station. In certain embodiments, the femtocell base station is configured to coordinate a handover of the at least one first mobile station from the femtocell base station to a neighboring base station. In certain embodiments, the femtocell base station is configured to transmit a message regarding the resource adjustment to the at least one first mobile station.
Abstract:
A family of low density parity check (LDPC) codes is generated based on a mother code having a highest code rate. The low density parity check (LDPC) codes include a codeword size of at least 1344. The LDPC codes also include a plurality of parity bits in a lower triangular form. The mother code is constructed by: selecting m number of rows and n number of columns; setting maximum column weights and row weights; designing a protograph matrix based on the set column weights and row weights and selected m and n; and selecting circulant blocks based on the protograph matrix.
Abstract:
A method for transmission, by dividing a transmission resource in a time domain subframe into a plurality of equal duration resource elements in a time and frequency domain, segregating the plurality of resource elements into a plurality of resource regions, modulating information to be transmitted to generate a sequence of modulation symbols at a transmitter, mapping the sequence of modulation symbols into the plurality of resource elements in the plurality of resource regions, and transmitting the modulation symbols via a plurality of antennas using the respective corresponding resource elements to a receiver. The mapping of the modulation symbols in at least one resource region is independent of a certain control channel information that is carried in said time domain subframe, and the mapping of the modulation symbols in at least another resource region is dependent upon said certain control channel information that is carried in said subframe. The information to be transmitted may be encoded to generate a plurality of code blocks, with roughly equal number of resource elements assigned to each of the plurality of code blocks in at least one resource region. Alternatively, the time domain subframe may contain only one resource region.
Abstract:
For use in a wireless communication network, a mobile station configured to determine a preamble sequence from a set of indexed preamble sequences by generating an index of the preamble sequence from a B-bit message is provided. The mobile station is configured to group the B bits of the message into n groups, each group having a substantially equal number of bits. The mobile station is also configured to generate a parity bit from each of the n groups. The mobile station is further configured to determine the index of the preamble sequence based on the n parity bits. The mobile station is still further configured to transmit the preamble sequence corresponding to the index of the preamble sequence. A base station configured to recover the B-bit message using the received signal from the mobile station is also provided.
Abstract:
A mobile station capable of communicating via an uplink transmission to at least one base station in a Multiple Input Multiple Output wireless network can map codewords to a plurality of layers. The mobile station includes a plurality of transmit antenna and a controller coupled to the plurality of transmit antenna. The controller is configured to map at least one codeword to a plurality of layers. The codeword includes a plurality of code blocks. The controller is configured to generate the plurality of code blocks from a transport block such that the number of code blocks generated correspond to an integer multiple of a number the plurality of layers.
Abstract:
A wireless communication network is provided. The network comprising a plurality of base stations capable of wireless communication with a plurality of subscriber stations within a coverage area of the network. At least one of the plurality of base stations comprises a transmitter configured to transmit a downlink frame. The downlink frame comprising a first Enhanced Multicast Broadcast Service (E-MBS) MAP. The first E-MBS MAP comprises a field with an indicator to indicate a next E-MBS MAP to be decoded by a subscriber station. The subscriber station, upon decoding the first E-MBS MAP, refrains from decoding subsequent E-MBS MAPS that precede the next E-MBS MAP to be decoded by the subscriber station in accordance with the indicator.
Abstract:
Apparatus, and an associated method, for facilitating operation of a radio communication system that provides for multi rate data communications, such as a CDMA 2000 system that provides for 1xEV-DV communication services. A supplemental pilot, or control, signal generator embodied at a mobile station generates a supplemental pilot, or control, signal that is sent on a newly defined supplemental pilot, or control, channel. As the data rates of data communicated upon a reverse supplemental channel changes, corresponding changes are made to the power level of the reverse supplemental pilot, or control, signal.