Abstract:
An extreme ultraviolet light system and method includes a drive laser, a chamber including an extreme ultraviolet light collector and a target material dispenser including an adjustable target material outlet capable of outputting multiple portions of target material along a target material path. Also included: a drive laser steering device, a detection system including at least one detector and a controller coupled to the target material dispenser, the detector system and the drive laser steering device. The controller includes logic for detecting a location of the first portion of target material from the first light reflected from the first portion of target material and logic for adjusting the target material dispenser outlet to output a subsequent portion of target material to a waist of the focused drive laser. A system and a method for optimizing an extreme ultraviolet light output is also disclosed.
Abstract:
Methods and systems are described for providing a high frequency high voltage source. For example, a power source for use in a particle accelerator, an arc welder or an inductive heater.
Abstract:
A method may be for creating a photolithography mask from a set of initial mask cells arranged to form an initial mask. The set may include first and second initial mask cells having a mask element in common within an initial region of the initial mask. The method may include a creation of a first modified mask cell and of a second modified mask cell including OPC processing operations, a comparison of the position of the mask element in common between the first modified mask cell and the second modified mask cell, and if the result of the comparison is greater than a threshold, a creation of a new mask region including an optical proximity correction processing operation on the initial region, and a creation of the photolithography mask from the new mask region.
Abstract:
In one aspect, the present invention is directed to a technique of, and system for simulating, verifying, inspecting, characterizing, determining and/or evaluating the lithographic designs, techniques and/or systems, and/or individual functions performed thereby or components used therein. In one embodiment, the present invention is a system and method that accelerates lithography simulation, inspection, characterization and/or evaluation of the optical characteristics and/or properties, as well as the effects and/or interactions of lithographic systems and processing techniques.
Abstract:
A particle beam irradiation apparatus comprises a particle beam shielding member which shields a part of a particle beam which is scanned, a prompt signal detector which detects a prompt signal which is generated when the particle beam which is scanned collides with the particle beam shielding member and a signal comparison device which predicts and obtains a generation pattern of a prompt signal which is generated with a predetermined scanning pattern and stores as a signal time pattern for comparison, wherein the signal comparison device detects an abnormality of scanning of a particle beam or the particle beam shielding member by comparing a detected signal time pattern which is a time pattern of a signal which is detected by the prompt signal detector to a signal time pattern for comparison which is stored.
Abstract:
A charged particle beam position monitor is provided with a plurality of position monitors and a beam data processing device that performs calculation processing of the state of a charged particle beam, based on a plurality of signals outputted from the position monitors. The beam data processing device includes a plurality of channel data conversion units that perform AD conversion processing of the plurality of signals outputted from the position monitors; a position size processing unit, for each of the position monitors, that calculates the beam position of the beam, based on voltage information obtained through the AD conversion processing; and an integrated control unit that controls the plurality of channel data conversion units in such a way that while the beam is irradiated onto an irradiation subject, AD conversion processing of the signals is performed at different timings for the respective position monitors.
Abstract:
A system and method for an extreme ultraviolet light chamber comprising a collector mirror, a cooling system coupled to a backside of the collector mirror operative to cool a reflective surface of the collector mirror and a buffer gas source coupled to the extreme ultraviolet light chamber.
Abstract:
An extreme ultraviolet light source apparatus in which a target material is irradiated with a laser beam and turned into plasma and extreme ultraviolet light is emitted from the plasma may include: a chamber in which the extreme ultraviolet light is generated; an electromagnetic field generation unit for generating at least one of an electric field and a magnetic field inside the chamber; and a cleaning unit for charging and separating debris adhered to an optical element inside the chamber.
Abstract:
An apparatus for producing light includes a chamber and an ignition source that ionizes a gas within the chamber. The apparatus also includes at least one laser that provides energy to the ionized gas within the chamber to produce a high brightness light. The laser can provide a substantially continuous amount of energy to the ionized gas to generate a substantially continuous high brightness light.
Abstract:
A charged particle beam position monitor is provided with a plurality of position monitors and a beam data processing device that performs calculation processing of the state of a charged particle beam, based on a plurality of signals outputted from the position monitors. The beam data processing device includes a plurality of channel data conversion units that perform AD conversion processing of the plurality of signals outputted from the position monitors; a position size processing unit, for each of the position monitors, that calculates the beam position of the beam, based on voltage information obtained through the AD conversion processing; and an integrated control unit that controls the plurality of channel data conversion units in such a way that while the beam is irradiated onto an irradiation subject, AD conversion processing of the signals is performed at different timings for the respective position monitors.