Abstract:
A method of operating a magnetic resonance imaging (MRI) device for habituating a patient and/or user to acoustic-noise of the device's operation. The method includes: listing a required set of the pulse-sequences (RSPS) for the patient, modifying the RSPS to a new set of sequences (NSPS) further comprising at least one demo-sequence, and operating, by means of generating the pulse-sequences, according to the NSPS. The demo-sequence is a redundant sequence, used solely for acoustic-sound habituation, while the originally listed RSPS are used for medical readings, thereby habituating the patient and/or user to the acoustic-noise of the operation.
Abstract:
The present invention provides an elongated active thermo-regulated neonatal transportable incubator (ANTI), having a main longitudinal axis with a proximal end and an opposite distal end comprising adjacent to at least one of the ends a temperature regulating vent (TRV). The TRV is configured to stream air from one end towards the opposite end substantially along the axis, and the ANTI is configured, by means of size and shape, to accommodate the neonate in parallel to the axis. Further the ANTI can be configured by means of size shape and material to at least partially inserted into an MRD having an open bore in its longitudinal axis, further accommodating the neonate parallel to the MRD bore. An incubator with a temperature regulating vent located outside the incubator and its base.
Abstract:
The present invention provides a hybrid imaging system for imaging a volume of interest of a subject, said hybrid system is characterized by:a. a MRI device;b. a photon transmitter, introducible within the body of an animal;c. at least one imaging photon detector located either within or outside said animal, for detecting fluorescence excited within said animal by said transmitted photons; andd. an image processor adapted to superimpose said MRI image and said at least one photon detector image, generating a rendered MRI image of said volume of interest of the subject.The hybrid system is configured to substantially simultaneously acquire MRI image and in vivo fluorescence image.
Abstract:
A magnetic resonance imaging device (MRD) comprising an RF assembly which has both a volume coil and a surface coil. The coils are simultaneously operable, so that they can be used in a number of ways. These include: both functioning as transceivers; the volume coil functioning as a transceiver and the surface coil as a receiver; the volume coil functioning as a transceiver and the surface coil as a transmitter; both the volume coil and the surface coil functioning as receivers; the volume coil functioning as a receiver and the surface coil as a transceiver; the volume coil functioning as a receiver and the surface coil as a transmitter; both the volume coil and the surface coil functioning as transmitters; the volume coil functioning as a transmitter and the surface coil as a transceiver; and the volume coil functioning as a transmitter and the surface coil as a receiver.
Abstract:
A method of determining the frequency and amplitude of a perturbing cyclic EM signal in the field of view of an NMR or MRI system during acquisition of a spin-echo spectrum. The frequency ν of the perturbing electromagnetic signal is determined by acquiring a plurality of n 2D NMR spectra with n different values of TR; selecting a peak in each of the n NMR spectra; determining the area of the peak; calculating possible frequencies along the ΩTR axis; and eliminating results that do not match the position along the Ωτ axis, thereby obtaining ν. The amplitude α of the perturbing electromagnetic signal is determined by calculating the square of the area of the peak.
Abstract:
Systems and methods for providing guided slicing of histological samples. The samples are acquired, spacially labeled with a fiducial marker, and imaged with a scanning system. The images are analyzed, either manually, semi-automatically or automatically, and likely locations of pathologies are identified. A slicing program is then generated and the sample sliced according to the slicing program, thereby ensuring that likely locations of pathologies are analyzed.
Abstract:
An integrated metal detector-portable medical device adapted to identify metals in a human body, where the metal detector is in connection with the portable medical device. The metal detector includes: at least one transmitter adapted to induce a magnetic field generated by a metal; at least one sensor adapted to detect the magnetic field generated by the metals to be detected; and at least one signaling mechanism adapted, upon detection of a magnetic field, to alert the user of identification of metals, if the intensity of a magnetic field is above a predetermined value.
Abstract:
A jacket for radio frequency (RF) shielding a Magnetic Resonance Device (MRD) from external environment electromagnetic interference during its operation, which allows for homogenized imaging conditions. The RF shielding jacket is sized and shaped like an envelope to accommodate the MRD, with at least a portion of the RF shielding jacket including an electromagnetic interference shield. The RF shielding jacket is also combined with passive temperature insulating properties.
Abstract:
An MRI device and method that reduce radio-frequency (RF) interference and the effect of the MRI's magnet, within an active RF-magnetic environment. The device includes a non-fringing magnetic field resonance MRI device having RF shielding means. The method includes: obtaining a UNF-MRD, and embedding or otherwise connecting an RF shielding means within or to the UNF-MRD to provide the same with a radio interference immunity (RII) from its RF-electromagnetic environment.
Abstract:
An MRI device that reduces radio-frequency (RF) interference and the effect of the MRI's magnet, within an active RF-magnetic environment. The device relies on a shield. The device includes a uniform non-fringing magnetic field resonance device (UNF-MRD), an RF shielding means either embedded within or in connection with the UNF-MRD for providing the UNF-MRD a radio interference immunity (RII) from RF-electromagnetic environment surrounding the same.