Abstract:
System, methods, and computer program products are provided for enhanced freight tracking and monitoring. The system may track the location of a freight shipment within a carrier's transportation network from the time it is picked up by a carrier from a consignor until it is delivered to a consignee, provide for weight determinations and shipping re-classifications of the freight shipment during transport, and provide real-time status information and reports to the carrier, consignor, and/or consignee.
Abstract:
Computer program products, methods, systems, apparatus, and computing entities are provided for automated loading and retrieval of items. In various embodiments, items are received at a loading station where identification data may be captured for each item and handling instructions may be generated. In some embodiments, a label having indicia associated with the item may be generated and affixed to the item. The items may then be deposited through an access door into the vehicle identified in the handling instructions. Once the items are loaded into the access door, an automated load/unload device may deposit the item in the appropriate storage location. The automated load/unload device may also retrieve and rearrange items as desired.
Abstract:
Systems, methods, apparatus, and computer program products are provided for monitoring powered assets for fueling. For example, in one embodiment, a fuel server can monitor the location of powered assets and fueling units. In response to determining, for example, that a powered asset that needs fuel is within a predetermined geofence defined around a fueling unit, the powered asset can emit a perceivable indication. The powered asset can then be authenticated for receiving fuel from the fueling unit.
Abstract:
Systems and methods are provided for scanning an item utilizing an X-ray scanner in order to facilitate a determination of whether the X-ray radiation penetrated through the entirety of the scanned item. Various embodiments comprise a conveying mechanism, an X-ray emitter, a detector, and an X-ray penetration grid (XPG). The XPG may comprise a radiopaque grid that may serve as a reference for determining whether radiation passes through the scanned item, the grid oriented such that the grid members are neither parallel nor perpendicular to the direction of travel. Such orientation may minimize or eliminate “ghosted” radiation signals included in a visual display of the radiation received by the detector. A scanned item may be oriented with the XPG such that radiation emitted by the X-ray emitter that passes through a portion of the scanned item must also pass through the XPG before being received by the detector.
Abstract:
An apparatus is provided for building an application. The apparatus may include at least one memory and at least one processor configured to generate a build of an application in a C Object-Oriented Programming Language. The processor is also configured to generate a unity file including a plurality of source files having references to one or more header files. At least two of the source files include references to a same header file. The processor is also configured to compile the unity file including the plurality of source files to obtain an object file. The processor is also configured to link the object file to generate an executable of the application. Corresponding computer program products and methods are also provided.
Abstract:
Computer program products, methods, systems, apparatus, and computing entities are provided for defining travel paths in parking areas. In one embodiment, travel paths in parking areas are defined in a digital map by automatically, semi-automatically, and/or manually after the parking areas are identified from one or more captured images of the parking area.
Abstract:
Methods, systems, apparatuses, and computer program products are provided for arranging for shipping a package without the customer needing to generate or apply a shipping label, or any other information, to the package. In one embodiment, a system may comprise a carrier server and a carrier device. The carrier server may receive and store a smart code and shipping information associated with the package, which it may link together. The carrier device may capture the smart code from the package and send a request, including the smart code, to the carrier server for related shipping information. The carrier server may receive the request from the carrier device, retrieve the shipping information based on the smart code, and send the shipping information to the carrier device. The carrier device may receive the shipping information and generate a shipping label for the package based on the shipping information.
Abstract:
Various embodiments of the present invention provide systems, methods, and computer program products for identify the probability of a particular attribute being located along a segment of interest for a driving route. In general, various embodiments of the invention involve representing the segment of the driving route by patterns of speed variations obtained from GPS elements along the segment of the driving route and using the representation as input for functions representing various types of attributes to determine the probability of a particular type of attribute existing along the segment of the driving route.
Abstract:
Computer program products, methods, systems, apparatus, and computing entities are provided for creating, modifying, and viewing geographic areas and their corresponding routes and items of work. For example, an interface can be provided with a map display area and a route display area. The map display area and the route display area can be synchronized to create new routes, modify existing routes, and/or view information about various routes and/or items of work.
Abstract:
Systems, methods, apparatus, and computer program products are provided for programmatically determining/identifying a delivery location and time based on the schedule of the consignee. One example embodiment may include a method comprising receiving shipping/parcel information/data, the shipping/parcel information/data indicative of an item/parcel to be delivered to a consignee by a carrier, determining whether consignee schedule information/data is accessible, the consignee schedule information/data comprising information/data indicative of a consignee and information/data indicative of a location and an associated time at which the consignee has indicated an ability to receive an item, and providing, to a client device, via a network, a delivery location and a delivery time, the delivery location and the delivery time determined between the consignee schedule information/data and the default delivery location and the estimated time of delivery.