Abstract:
An electronic device may have a display that is protected by a transparent cover layer. The transparent cover layer may include a laser-annealed sapphire coating on the outer surface of a glass substrate or other transparent substrate. The sapphire coating may provide the display with a hard, scratch-resistant outer surface. The sapphire coating may be formed by coating a glass substrate with a thin film of amorphous aluminum oxide. The aluminum oxide thin film may be locally heated to transform the amorphous aluminum oxide into alpha-phase aluminum oxide (sapphire). Local heating may be achieved by laser annealing the aluminum oxide coating with a carbon dioxide laser. The laser may produce laser light having a wavelength that is absorbed in the aluminum oxide coating without being absorbed by the glass substrate so that the glass substrate is not damaged during the laser annealing process.
Abstract:
Sputter deposition systems and methods for depositing film coatings on one or more substrates are disclosed. The systems and methods are used to prevent or reduce an amount of defects within a deposited film. The methods involve removing defect-related particles that are formed during a deposition process from certain regions of the sputter deposition system and preventing the defect-related particles from detrimentally affecting the quality of the deposited film. In particular embodiments, methods involve creating a flow of gas from a deposition region to a particle collection region the sputter deposition system such that the defect-related particles are entrained within the flow of gas and away from the deposition region. In particular embodiments, the sputter deposition system is a meta-mode sputter deposition system.
Abstract:
An organic light-emitting diode display may have an array of pixels. Each pixel may have an organic light-emitting diode and thin-film transistor circuitry that controls current flow through the organic light-emitting diode. The thin-film transistor circuitry may include silicon thin-film transistors and semiconducting-oxide thin-film transistors. Double gate transistor structures may be formed in the transistors of the thin-film transistor circuitry. A double gate transistor may have a semiconductor layer sandwiched between first and second dielectric layers. The first dielectric layer may be interposed between an upper gate and the semiconductor layer and the second dielectric layer may be interposed between a lower gate and the semiconductor layer. Capacitor structures may be formed from the layers of metal used in forming the upper and lower gates and other conductive structures.
Abstract:
A touch sensor panel having co-planar single-layer touch sensors fabricated on a single side of a substrate is disclosed. The drive and sense lines can be fabricated as column-like patterns in a first orientation and patches in a second orientation, where each column-like pattern in the first orientation is connected to a separate metal trace in the border area of the touch sensor panel, and all patches in each of multiple rows in the second orientation are connected together using a separate metal trace in the border area of the touch sensor panel. The metal traces in the border areas can be formed on the same side of the substrate as the patches and columns, but separated from the patches and column-like patterns by a dielectric layer.
Abstract:
A polarizer includes a polarizer component having a top surface and an opposite bottom surface. The bottom surface is configured to couple to a color filter layer for a liquid crystal display. The polarizer also includes a transparent conducting layer disposed over the top surface. The transparent conducting layer being configured to electrically shield the LCD from a touch panel. The polarizer further includes a coating layer disposed over the transparent conducting layer.
Abstract:
Compact touch sensors for touch sensitive devices and processes for forming the touch sensors are disclosed. The touch sensor structure can include a substrate, one or more underlying layers disposed on the substrate, one or more blocking layers disposed on the substrate or on one or more underlying layers, and one or more patterned layers disposed on the underlying layers or blocking layers. The one or more blocking layers can be configured to block underlying layers from exposure to certain wavelengths of light or from penetration of a laser beam that can cause damage. Additionally, the one or more underlying layers can be multi-functional, including the ability to block one or more light sources.
Abstract:
An evaporation tool is provided that has an elongated evaporation source with elongated edges that run parallel to a longitudinal axis and shorter edges that run perpendicular to the longitudinal axis. The evaporation source has multiple evaporation sources formed by respective source orifices through which material is evaporated. An evaporation control structure is mounted to the evaporation source to enhance the directionality of evaporated material. A shadow mask is provided that has a rectangular frame for supporting a metal mask layer with a pattern of openings. The evaporation control structure ensures that the evaporated material from the source is evaporated towards the shadow mask. Angled walls attached to the elongated edges, a series of vertical walls that extend between the angled walls in the evaporation control structure, and aligned vertical wall extensions on the frame of the shadow mask are used to block evaporated material following angled trajectories.
Abstract:
An electronic device display may have a color filter layer and a thin film transistor layer. A layer of liquid crystal material may be interposed between the color filter layer and the thin film transistor layer. A layer of polarizer may be laminated onto the surface of the color filter layer. Laser trimming may ensure that the edges of the polarizer are even with the edges of the color filter layer. The thin film transistor layer may have an array of thin film transistors that control pixels of the liquid crystal material in the display. Driver circuitry may be used to control the array. The driver circuitry may be encapsulated in a planarized encapsulant on the thin film transistor layer or may be mounted to the underside of the color filter layer. Conductive structures may connect driver circuitry on the color filter layer to the thin film transistor layer.
Abstract:
A polarizer integrated with conductive material and a process for forming a polarizer integrated with conductive material are disclosed. A polarizer can be integrated with conductive material to form a portion of a touch sensor panel. In one example, a layer of conductive film forming either the row or column traces can be patterned on a surface of a substrate in the polarizer. In another example, the layer of conductive film can be patterned on a viewing angle compensation film of the polarizer. One or more of the polarizer's polarizing layer, protective substrates or viewing angle compensation film can act as a dielectric between the conductive material forming the rows and column traces in the stack-up. As a result, the clear polymer spacer acting as a dielectric in touch panels can be removed, reducing the thickness of the touch screen stack-up.
Abstract:
This relates to displays for which the use of dual function capacitive elements does not result in any decreases of the aperture of the display. Thus, touch sensitive displays that have aperture ratios that are no worse than similar non-touch sensing displays can be manufactured. More specifically, this relates to placing touch sensing opaque elements so as to ensure that they are substantially overlapped by display related opaque elements, thus ensuring that the addition of the touch sensing elements does not substantially reduce the aperture ratio. The touch sensing display elements can be, for example, common lines that connect various capacitive elements that are configured to operate collectively as an element of the touch sensing system.