Abstract:
A method of loading a composition into a structural element of a stent, where the structural element is defined by a lumen and at least one opening to access the lumen. The structural element, or a stent having such a structural element, is immersed in a solution or a composition, and the composition or solution is allowed to fill the lumen. The composition or solution may comprise a therapeutic agent.
Abstract:
Compositions and methods of using the compositions are provided for forming an embolus within a region of an anatomical lumen for a transitory period in order to achieve a therapeutic effect.
Abstract:
Medical devices having a catalyst capable of catalyzing the generation of nitric oxide in vivo and methods of treating a vascular condition using the devices are provided.
Abstract:
Methods of treating coronary artery disease (CAD) with bioresorbable stents resulting in reduced angina or non-ischemic chest pain are described. Methods of treatment and devices for treatment of angina and post-procedural chest pain that include anti-angina agents incorporated into the device are disclosed.
Abstract:
The present invention relates to the regional delivery of therapeutic agents for the treatment of vascular diseases wherein regional delivery refers to delivery of a therapeutically effective amount of the therapeutic agent to an area of the vessel that includes not only afflicted tissue but non-afflicted tissue at the periphery of the afflicted tissue as well.
Abstract:
A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. A sheath is placed over the crimped scaffold after crimping to reduce recoil of the crimped polymer scaffold and maintain scaffold-balloon engagement relied on to hold the scaffold to the balloon when the scaffold is being delivered to a target in a body. The sheath is removed by a health professional either by removing the sheath directly or using a tube containing the catheter.
Abstract:
An apparatus for loading material into a stent strut can comprise a cover sleeve. The cover sleeve is elastic so that it can reduce in diameter so as to press against the stent strut, and expand in diameter so as to be spaced apart from the stent strut. The stent strut can include a lumen into which material is injected. When pressed against the stent strut, the cover sleeve seals side openings to the lumen and prevents injected material from leaking out of the side openings during the injection process.
Abstract:
A coated implantable medical device and a method of coating an implantable medical device is disclosed, the method includes applying a composition onto the device and drying the composition at elevated temperature in an environment having increased relative humidity. A pre-screening method for a manufacturing lot of coated stents to determine the number of drug coating layers for a desired drug release rate is disclosed. The method including coating and testing small groups of stents, and applying the results of the tests to determine the number of drug coating layers to apply to the manufacturing lot of stents.
Abstract:
A biobeneficial coating composition for coating an implantable device, such as a drug eluting stent, a method of coating the device with the composition, an implantable device coated with the composition, and a method of treating a disorder are provided.