Abstract:
A photoluminescence sheet comprises a polymer sheet having particles of at least one photoluminescence material homogeneously distributed throughout its volume. The polymer sheet comprises a UV-curable polymer that is partially cured and which is thermally re-flowable before being fully cured by exposure to UV light.
Abstract:
A red-emitting phosphor comprises a nitride-based composition represented by the chemical formula M(x/v)M′2Si5-xAlxN8:RE, wherein: M is at least one monovalent, divalent or trivalent metal with valence v; M′ is at least one of Mg, Ca, Sr, Ba, and Zn; and RE is at least one of Eu, Ce, Tb, Pr, and Mn; wherein x satisfies 0.1≦x
Abstract:
Yellow-green to yellow-emitting, lutetium aluminate-based terbium (Tb) containing phosphors for use in white LEDs, general lighting, and LED and backlighting displays are disclosed herein. The phosphor may further contain gadolinium (Gd). In one embodiment of the present invention, the phosphor comprises a cerium-activated, yellow-green to yellow-emitting lutetium aluminate-based phosphor having the formula (Lu1-xAx)3Al5O12:Ce wherein A is at least one of Gd and Tb and 0.1≦x≦1.0, wherein the phosphor is configured to emit light having a peak emission wavelength ranging from about 550 nm to about 565 nm, and wherein the phosphor contains at least some Tb.
Abstract:
A photoluminescence material paste comprises: a first inorganic photoluminescence material having a first density, a second inorganic photoluminescence material having a second density and a light transmissive non-curable silicone fluid that is not curable by itself. The first density of the first inorganic photoluminescence material is different from the second density of the second inorganic photoluminescence material. The first and second inorganic photoluminescence materials are substantially homogenously distributed within the light transmissive non-curable silicone fluid to form the photoluminescence material paste. A weight loading of the first and second photoluminescence materials in the photoluminescence material paste is in a range of about 60% to about 95%.
Abstract:
A solid-state lamp is described that includes a wavelength conversion component located at one end of the lamp. The solid-state lamp comprises: one or more solid-state light emitting devices (typically LEDs); a thermally conductive body; at least one duct; and a photoluminescence wavelength conversion component remote to the one or more LEDs, located at one end of the lamp. The lamp is configured such that the duct extends through the photoluminescence wavelength conversion component and defines a pathway for thermal airflow through the thermally conductive body to thereby provide cooling of the body and the one or more LEDs.
Abstract:
Disclosed herein are green-emitting, garnet-based phosphors having the formula (Lu1-a-b-cYaTbbAc)3 (Al1-dBd)5(O1-eCe)12: Ce,Eu, where A is selected from the group consisting of Mg, Sr, Ca, and Ba; B is selected from the group consisting of Ga and In; C is selected from the group consisting of F, Cl, and Br; and 0≦a≦1; 0≦b≦1; 0
Abstract:
An LED-based light source for generating light having a selected dominant wavelength λds comprises a package housing a plurality of LEDs consisting of LEDs from first and second wavelength bins. The first wavelength bin comprises LEDs having a dominant wavelength λd1 that is within a first wavelength range and the second wavelength bin comprises LEDs having a dominant wavelength λd2 that is within a second wavelength range. The first wavelength bin can comprise LEDs having a dominant wavelength that is shorter than the selected dominant wavelength whilst the second wavelength bin comprises LEDs having a dominant wavelength that is longer than the selected dominant wavelength. The wavelength bins and number of LEDs are selected such that in operation the dominant wavelength of the combined light emitted by the source is the selected dominant wavelength. Lighting arrangements and light emitting devices incorporating such light sources are disclosed.
Abstract:
Disclosed herein are yellow-green and yellow-emitting aluminate based phosphors for use in white LEDs, general lighting, and LED and backlighting displays. In one embodiment of the present invention, the cerium-activated, yellow-green to yellow-emitting aluminate phosphor comprises the rare earth lutetium, at least one alkaline earth metal, aluminum, oxygen, at least one halogen, and at least one rare earth element other than lutetium, wherein the phosphor is configured to absorb excitation radiation having a wavelength ranging from about 380 nm to about 480 nm, and to emit light having a peak emission wavelength ranging from about 550 nm to about 600 nm.
Abstract:
A method is described for manufacturing an LED lamp module, where the individual LEDs in the lamp module do not include a conventional package structure and/or integrated encapsulation on the individual LEDs. The lamp module includes a co-extruded component, the co-extruded component comprising an elongate lens and a layer of photoluminescent material. The elongate lens is for shaping light emitted from the lamp and comprises an elongate interior cavity. The layer of a photoluminescent material is located on an interior wall of the elongate interior cavity. An optical medium is provided as part of the manufacturing process for the lamp module, where the optical medium surrounds the LEDs in an array of LEDs. The optical medium can be co-extruded over the LEDs. In addition, a liquid optical medium can be applied in the assembly process to remove air interfaces between the LEDs and component.
Abstract:
A light emitting device comprises a substantially planar light transmissive substrate having a light emitting surface and an opposite surface. The substrate is configured as a light guiding medium. The light emitting device also comprises at least one phosphor material disposed as a layer on the light emitting surface with a plurality of window areas and at least one source of excitation radiation of a first wavelength positioned adjacent to at least one peripheral edge of the substrate. The source is configured to couple excitation radiation into the substrate such that it is waveguided within the substrate by total internal reflection. Additionally, the light emitted by the device from the light emitting surface comprises first wavelength radiation and second, longer wavelength photoluminescent light emitted by the phosphor layer as a result of excitation by the source.