Abstract:
An energy storage system includes a photovoltaic energy field, a stationary energy storage device, an energy converter, and a controller. The photovoltaic energy field converts solar energy into electrical energy and charges the stationary energy storage device with the electrical energy. The energy converter converts the electrical energy stored in the stationary energy storage device into AC power at a discharge rate and supplies a campus with the AC power at the discharge rate. The controller predicts a required load of the campus and an electrical generation of the photovoltaic energy field across a time horizon and optimizes a cost function subject to a set of constraints to determine a discharge rate of the AC power to achieve a desired power factor. At least one of the set of constraints applied to the cost function ensures that the energy converter can convert the electrical energy stored in the stationary energy storage device into AC power having the determined power factor and discharge rate.
Abstract:
An energy storage system includes a photovoltaic energy field, a stationary energy storage device, an energy converter, and a controller. The photovoltaic energy field converts solar energy into electrical energy and charges the stationary energy storage device with the electrical energy. The energy converter converts the electrical energy stored in the stationary energy storage device into AC power at a discharge rate and supplies a campus with the AC power at the discharge rate. The controller generates a cost function of the energy consumption of the campus across a time horizon which relates a cost to operate the campus to the discharge rate of the AC power supplied by the stationary energy storage device. The controller applies constraints to the cost function, determines a minimizing solution to the cost function which satisfies the constraints, and controls the energy converter.
Abstract:
A frequency response optimization system includes a battery, a power inverter, and a frequency response controller. The battery is configured to store and discharge electric power. The power inverter is configured to control an amount of the electric power stored or discharged from the battery. The frequency response controller includes a high level controller configured to determine values of clipping parameters and a low level controller configured to use the values of the clipping parameters to modify battery power setpoints. The power inverter is configured to use the modified battery power setpoints to control the amount of the electric power stored or discharged from the battery.
Abstract:
A control system for a central energy facility with distributed energy storage includes a high level coordinator, a low level airside controller, a central plant controller, and a battery controller. The high level coordinator is configured to perform a high level optimization to generate an airside load profile for an airside system, a subplant load profile for a central plant, and a battery power profile for a battery. The low level airside controller is configured to use the airside load profile to operate airside HVAC equipment of the airside subsystem. The central plant controller is configured to use the subplant load profile to operate central plant equipment of the central plant. The battery controller is configured to use the battery power profile to control an amount of electric energy stored in the battery or discharged from the battery at each of a plurality of time steps in an optimization period.
Abstract:
A cascaded control system is configured to control power consumption of a building during a demand limiting period. The cascaded control system includes an energy use setpoint generator and a feedback controller. The energy use setpoint generator is configured to use energy pricing data and measurements of a variable condition within the building to generate an energy use setpoint during the demand limiting period. The feedback controller is configured to use a difference between the energy use setpoint and a measured energy use to generate a control signal for building equipment that operate to affect the variable condition within the building during the demand limiting period.
Abstract:
A system that modifies an environmental condition of a building zone is provided. The system includes an airside processing circuit and a waterside processing circuit. The airside processing circuit drives a damper actuator to a first setpoint based on an air flow rate setpoint and a first pressure measurement, receives an air flow error signal based on the air flow rate setpoint and a second pressure measurement, determines a setpoint based on the air flow error signal, and drives the damper actuator to the second setpoint. The waterside processing circuit drives a valve actuator to a first setpoint based on a fluid flow rate setpoint and a first flow rate measurement, receives a fluid flow error signal based on the fluid flow rate setpoint and a second flow rate measurement, determines a second setpoint based on the fluid flow error signal, and drives the valve actuator to the second setpoint.
Abstract:
A building management system includes a communications interface connected to HVAC devices, a device identifier configured to identify the HVAC devices, a fault detector configured to detect a fault condition in the identified devices, and a causal relationship template retriever configured to retrieve a fault causation template of system parameters specific to the fault condition. The building management system further includes a status requestor configured to retrieve operating data from the identified devices and a user interface generator. The user interface generator is configured to populate the system parameters of the fault causation template with the retrieved operating data and transmit a signal to display a user interface with the populated fault causation template on a display screen.
Abstract:
A cascaded control system configured to modify an environmental condition of a building includes a valve configured to regulate a flow of a fluid through a conduit, an actuator including a motor and a drive device, and a communications mechanism. The communications mechanism is configured to receive a flow rate setpoint from an external control device of an outer control loop. The cascaded control system further includes a processing circuit coupled to the motor and the communications mechanism. The processing circuit is configured to determine an actuator position setpoint using a cascaded feedback control mechanism based on the flow rate setpoint and a flow rate measurement from a flow rate sensor of an inner control loop and to operate the motor to drive the drive device to the actuator position setpoint.
Abstract:
A frequency response optimization system includes a battery configured to store and discharge electric power, a power inverter configured to control an amount of the electric power stored or discharged from the battery at each of a plurality of time steps during a frequency response period, and a frequency response controller. The frequency response controller is configured to receive a regulation signal from an incentive provider, determine statistics of the regulation signal, use the statistics of the regulation signal to generate an optimal frequency response midpoint that achieves a desired change in a state-of-charge (SOC) of the battery while participating in a frequency response program, and use the midpoints to determine optimal battery power setpoints for the power inverter. The power inverter is configured to use the optimal battery power setpoints to control the amount of the electric power stored or discharged from the battery.
Abstract:
A central plant includes an electrical energy storage subplant configured to store electrical energy, a plurality of generator subplants configured to consume one or more input resources, including discharged electrical energy, and a controller. The controller is configured to determine, for each time step within a time horizon, an optimal allocation of the input resources. The controller is configured to determine optimal allocation of the output resources for each of the subplants in order to optimize a total monetary value of operating the central plant over the time horizon.