Abstract:
A method for preparing a catalyst comprising the steps of: providing a gold-silver alloy article, removing the silver from the article by immersing the article in a de-alloying solution to form a nanoporous gold (NPG) article with a plurality of nanopores followed by cleaning the surface of the NPG article and removing the de-alloying solution from the nanopores with deionized water. An electrode is attached to the NPG article and a monoatomic layer/lower layer of copper, silver, or lead, is deposited onto the surface of and within the nanopores of the NPG article by immersing the NPG article in an ion solution to form an M-NPG article. The M-NPG article is removed from the ion solution and the monoatomic/lower layer is replaced with platinum ions by immersing the M-NPG article into a platinum ion solution followed by cleaning the electrode and the NPG-Pt article with deionized water. A monoatomic layer/lower layer of copper, silver, or lead, is then deposited onto the surface of and within the nanopores of the NPG-Pt article by immersing the NPG-Pt article in an ion solution to form an M-NPG-Pt article. The M-NPG-Pt article is removed from the ion solution and the monoatomic/lower layer of copper, silver, or lead is replaced with gold ions by immersing the M-NPG-Pt article into a gold ion solution to form an NPG-Pt—Au article followed by cleaning the electrode and the NPG-Pt—Au article with deionized water.
Abstract:
Techniques for supporting multiple service discovery protocols (SDPs) on a multi-functional peripheral (MFP) are provided. The MFP includes a plurality of SDP services, a plurality of SDP adapters, and a device service management system (DSMS). Each SDP service interfaces with one SDP adapter of the plurality of SDP adapters. Each SDP adapter interfaces with the DSMS. Each SDP adapter translates messages from its corresponding SDP service into a format the DSMS understands, and vice versa. The DSMS manages service metadata information about multiple services provided by the MFP. In response to a request, from a client, for metadata of one or more services provided by the MFP, a SDP service requests the metadata from its corresponding SDP adapter. The SDP adapter requests the metadata from the DSMS, which responds to the SDP adapter with the metadata. The SDP adapter sends the metadata to the SDP service, which sends the metadata to the client.
Abstract:
A method of operating a gas sensor is disclosed, wherein the sensor includes a pumping electrode configuration and a measuring electrode configuration, and wherein the method includes operating the sensor in a first mode in which a first, lower pumping potential sufficient to electrochemically remove an interfering compound from the sensor without electrochemically removing the analyte from the sensor is applied across the pumping electrode configuration and a measuring potential sufficient to electrochemically remove the analyte from the sensor is applied across the measuring electrode configuration; and operating the sensor in a second mode in which a second, higher pumping potential sufficient to electrochemically remove the analyte from the sensor is applied to the pumping electrode configuration.
Abstract:
In a nonvolatile memory, the select gates (144S) are formed from one conductive layer (e.g. polysilicon or polyside), and the wordlines (144) interconnecting the select gates are made from a different conductive layer (e.g. metal). The wordlines overlie an dielectric (302, 304, 310) formed over control gate lines (134). Each control gate line provides control gates for one column of the memory cells. The adjacent control gate lines for the adjacent memory columns are spaced from each other. The dielectric thickness can be controlled to reduce the capacitance between the wordlines and the control gates. In some embodiments, the floating gates (120) are fabricated in a self-aligned manner using an isotropic etch of the floating gate layer.
Abstract:
An automatic shutdown system for optical multiplexers and demultiplexers includes an optical switch that is disposed in a common optical channel between a transmitter and a receiver of an optical communication system. The optical switch may attenuate or block a signal in the common optical channel during power-off conditions. The optical switch may also provide a low insertion loss and low polarization loss in the common optical channel during power-on conditions.
Abstract:
Dielectric regions (210) are formed on a semiconductor substrate between active areas of nonvolatile memory cells. The top portions of the dielectric region sidewalls are etched to recess the top portions laterally away from the active areas. Then a conductive layer is deposited to form the floating gates (410). The recessed portions of the dielectric sidewalls allow the floating gates to be wider at the top. The gate coupling ratio is increased as a result. Other features are also provided.
Abstract:
In a memory cell (110) having multiple floating gates (160), the select gate (140) is formed before the floating gates. In some embodiments, the memory cell also has control gates (170) formed after the select gate. Substrate isolation regions (220) are formed in a semiconductor substrate (120). The substrate isolation regions protrude above the substrate. Then select gate lines (140) are formed. Then a floating gate layer (160) is deposited. The floating gate layer is etched until the substrate isolation regions are exposed. A dielectric (164) is formed over the floating gate layer, and a control gate layer (170) is deposited. The control gate layer protrudes upward over each select gate line. These the control gates and the floating gates are defined independently of photolithographic alignment. In another aspect, a nonvolatile memory cell has at least two conductive floating gates (160). A dielectric layer (164) overlying the floating gate has a continuous feature that overlies the floating gate and also overlays a sidewall of the select gate (140). Each control gate (160) overlies the continuous feature of the dielectric layer and also overlies the floating gate. In another aspect, substrate isolation regions (220) are formed in a semiconductor substrate. Select gate lines cross over the substrate isolation regions. Each select gate line has a planar top surface, but its bottom surface goes up and down over the substrate isolation regions. Other features are also provided.
Abstract:
A method of operating a gas sensor is disclosed, wherein the sensor includes a pumping electrode configuration and a measuring electrode configuration, and wherein the method includes operating the sensor in a first mode in which a first, lower pumping potential sufficient to electrochemically remove an interfering compound from the sensor without electrochemically removing the analyte from the sensor is applied across the pumping electrode configuration and a measuring potential sufficient to electrochemically remove the analyte from the sensor is applied across the measuring electrode configuration; and operating the sensor in a second mode in which a second, higher pumping potential sufficient to electrochemically remove the analyte from the sensor is applied to the pumping electrode configuration.
Abstract:
A system and method for charging a battery is provided. The method includes applying an excitation current pulse to the battery to determine the battery type and whether the battery is capable of holding a charge. To charge the battery, a series of current pulses are applied in groups with the average current being reduced for each succeeding group to take advantage of changing battery charge acceptance. When the voltage of the battery matches a predetermined value, application of the current pulse groups is ended. A single current pulse is then applied to complete the battery charge.