Abstract:
A coating system and a method for its manufacture are provided. An electrically conductive base coat and a porous overcoat lying over the base coat are arranged on a ceramic substrate. At least one additional deposited layer is arranged on the base coat in such a way that the additional layer is formed in the pores of the porous overcoat adjacent to the base coat. The additional layer is deposited either by currentless or electrolytic deposition. For electrolytic deposition of the additional layer, the ceramic substrate sintered with the base coat and the overcoat is submerged in an electrolytic bath and the base coat is connected as a cathode. The currentless deposition takes place from a solution of the metal to be deposited with the addition of a reducing agent.
Abstract:
Ablation probes are provided for perfusing the tissue, while the tissue is ablated. The ablation probe comprises an elongated shaft and an ablative element, such as a needle electrode. The ablation probe further comprises a lumen that extends through the probe shaft, which will be used to deliver an fluid to the distal end of the probe shaft for perfusion into the surrounding tissue. The ablation probe further comprises a porous structure that is associated with the distal end of the shaft in fluid communication with the lumen. For example, the distal end of the shaft, or the entirety of the shaft, can be composed of the porous structure. Or, if the ablative element is an electrode, the electrode can be composed of the porous structure. Because the pores within the porous structure are pervasive, the fluid will freely flow out into the tissue notwithstanding that some of the pores may become clogged.
Abstract:
A protective and decorative coating composition including semiconductor particulate colorants which in combination with a resinous composition produce a desired color. The colorants are semiconductor particles which exhibit sized-quantized absorption of visible light and have a particle size of up to about 12 nm.
Abstract:
Compositions are provided for increasing the electrical conductivity of concrete or controlled low-strength materials (flowable fill). One composition sets to produce a concrete and includes from 1% to 30% by weight of portland cement; from 1% to 30% by weight of fly ash having a carbon content as measured by loss on ignition of greater than 12%; from 40% to 90% by weight of an aggregate; from 0.1% to 20% by weight of carbon fibers; and water in a sufficient amount such that the composition sets to a concrete. Another composition is a self-compacting, cementitious flowable fill composition that includes from 1% to 30% by weight of portland cement; from 5% to 85% by weight of fly ash; from 0.1% to 20% by weight of carbon fibers; and water in a sufficient amount such that the composition sets to a material having a compressive strength of 8.3 MPa or less.
Abstract:
The disclosure relates to a process for forming a deposit on the surface of a metallic or conductive surface. The process employs an electroless process to deposit a silicate containing coating or film upon a metallic or conductive surface.
Abstract:
A flexible graphite sheet exhibiting enhanced isotropy is provided. In addition, an apparatus, system and method for continuously producing a resin-impregnated flexible graphite sheet is also provided.
Abstract:
A thermally conductive carbon foam is provided, normally having a thermal conductivity of at least 40 W/m·K. The carbon foam usually has a specific thermal conductivity, defined as the thermal conductivity divided by the density, of at least about 75 W·cm3/m·°K·gm. The foam also has a high specific surface area, typically at least about 6,000 m2/m3. The foam is characterized by an x-ray diffraction pattern having “doublet” 100 and 101 peaks characterized by a relative peak split factor no greater than about 0.470. The foam is graphitic and exhibits substantially isotropic thermal conductivity. The foam comprises substantially ellipsoidal pores and the mean pore diameter of such pores is preferably no greater than about 340 microns. Other materials, such as phase change materials, can be impregnated in the pores in order to impart beneficial thermal properties to the foam. Heat exchange devices and evaporatively cooled heat sinks utilizing the foams are also disclosed.
Abstract:
The invention provides conductive concrete suitable for commercial and large-scale production. The conductive concrete uses carbonaceous particles as conductive phase, to achieve concrete with resistivities as low as 2 &OHgr;cm and compressive strengths over 30 Mpa (both measured at 28 days).
Abstract:
Compositions for producing electrically conductive controlled low-strength material and electrically conductive concrete are provided, comprising conventional components, but utilizing a non-standard, high carbon content, fly ash. One settable controlled low-strength material composition includes 1%-20% by weight of portland cement,18%-85% by weight of fly ash having a carbon content of greater than 12%, and water such that the composition sets to a material having a compressive strength of 8.3 MPa or less. One settable concrete composition includes 1%-30% by weight of portland cement, 1%-20% by weight of fly ash having a carbon content of greater than 12%, 40%-90% by weight of an aggregate, and water such that the composition sets to a concrete having a compressive strength of at least 13.8 MPa.