Abstract:
A dosing and mixing arrangement including an exhaust conduit defining a central axis; a mixing conduit positioned within the exhaust conduit; a dispersing arrangement (e.g., a mesh) disposed at the upstream end of the mixing conduit; an injector coupled to the exhaust conduit and configured to direct reactants into the exhaust conduit towards the mesh; and an annular bypass defined between the mixing conduit and the exhaust conduit for allowing exhaust to bypass the upstream end of the mixing conduit and to enter the mixing conduit downstream of the mesh.
Abstract:
An exhaust treatment device is disclosed. The exhaust treatment device has a compact configuration that includes integrated reactant dosing, reactant mixing and contaminant removal/treatment. The mixing can be achieved at least in part by a swirl structure and contaminant removal can include NOx reduction.
Abstract:
A fine fiber can be made having a structure with an axial core and a coating layer. The fiber can have a polymer core and one or two layers surrounding the core. The fine fiber can be made from a polymer material and a resinous aldehyde (e.g., melamine-aldehyde) composition such that the general structure of the fiber has a polymer core surrounded by at least a layer of the resinous aldehyde composition.
Abstract:
A filter element arrangement is provided which includes a media pack comprising Z-filter media, a preform and an overmold sealing a portion of the interface between the preform and the media pack, and also forming an air cleaner seal for the filter element. The overmold preferably comprises molded, foamed, polyurethane. A variety of media pack shapes can be used.
Abstract:
An exhaust treatment device for treating exhaust includes a main body defining an interior, an inlet, and an outlet; an inlet arrangement disposed at the inlet; an aftertreatment substrate disposed between the inlet and the outlet; a restrictor arrangement disposed between a first closed end of the main body interior and the aftertreatment substrate; and a dosing arrangement configured to inject reactant into the exhaust. The restrictor arrangement defines a restricted passageway that extends towards the first closed end so that exhaust entering the main body interior from the inlet is swirled around the restricted passageway before entering the restricted passageway and passing to a second chamber prior to the aftertreatment substrate.
Abstract:
A dosing and mixing arrangement including an exhaust conduit defining a central axis; a mixing conduit positioned within the exhaust conduit; a dispersing arrangement (e.g., a mesh) disposed at the upstream end of the mixing conduit; an injector coupled to the exhaust conduit and configured to direct reactants into the exhaust conduit towards the mesh; and an annular bypass defined between the mixing conduit and the exhaust conduit for allowing exhaust to bypass the upstream end of the mixing conduit and to enter the mixing conduit downstream of the mesh.
Abstract:
The currently-described technology relates to a method of constructing an adsorbent assembly. An adsorbent material is enclosed within a housing. The adsorbent material that is enclosed in the housing is dried by allowing moisture to escape the housing through an injection opening defined by the housing. Water is injected into the housing through the injection opening. After injecting water into the housing, the injection opening of the housing is sealed with a substantially vapor-impermeable material. Adsorbent assemblies are also described.
Abstract:
An air filter assembly having a primary filter element, a secondary filter element, and a housing with an outlet tube is disclosed. The primary filter element is operably installed within the housing and has an interior volume. The secondary filter element is operably installed within the primary filter element interior volume and has an interior volume defined by a first wall extending between a closed end cap and an opposite open end cap. The open end cap of the secondary filter element defines a sealing structure having a first portion extending into the secondary filter interior volume. The outlet tube is operably connected to the housing air outlet opening and includes an inset collar being at least partially disposed within the secondary filter interior volume and extending over at least a part of the sealing structure first portion.
Abstract:
A liquid filter assembly is provided. The preferred assembly includes a serviceable filter cartridge having a primary filter section and a secondary or bypass filter section. The preferred assembly includes a bypass valve arrangement and a suction filter arrangement. An optional valve, to allow flow from an interior of the assembly to a reservoir if needed, is provided. Preferred serviceable filter cartridges are shown.