Abstract:
A system for semiconductor wafer manufacturing, comprises a chamber process path for processing the wafer, and a device operable to remove particles from the wafer by electrostatic and electromagnetic methodologies wherein the device is installed in the chamber process path.
Abstract:
Provided is a method and system for vapor deposition of a coating material onto a semiconductor substrate. In an embodiment, photoresist is deposited. An in-situ baking process may be performed with the vapor deposition. In an embodiment, a ratio of chemical components of a material to be deposited onto the substrate is changed during the deposition. Therefore, a layer having a gradient chemical component distribution may be provided. In an embodiment, a BARC layer may be provided which includes a gradient chemical component distribution providing an n,k distribution through the layer. Other materials that may be vapor deposited include pattern freezing material.
Abstract:
The present disclosure provides a method for making a semiconductor device. The method includes forming a first material layer on a substrate; forming a second material layer on the first material layer; forming a sacrificial layer on the second material layer; forming a patterned resist layer on the sacrificial layer; applying a first wet etching process using a first etch solution to the substrate to pattern the sacrificial layer using the patterned resist layer as a mask, resulting in a patterned sacrificial layer; applying an ammonia hydroxide-hydrogen peroxide-water mixture (APM) solution to the substrate to pattern the second material layer, resulting in a patterned second material layer; applying a second wet etching process using a second etch solution to the substrate to pattern the first material layer; and applying a third wet etching process using a third etch solution to remove the patterned sacrificial layer.
Abstract:
A method comprises forming a BARC layer on a substrate, treating the BARC layer to make its surface hydrophilic, forming a photoresist layer on the treated BARC layer, exposing the photoresist layer to a predetermined pattern, and developing the photoresist layer to form patterned photoresist.
Abstract:
The present disclosure provides a plurality of methods of performing a lithography process. In one embodiment, a substrate including a layer of photoresist is provided. The layer of photoresist is exposed. The exposed layer of photoresist is developed. A chemical rinse solution is applied to the developed photoresist. The chemical rinse solution includes an alcohol base chemical. The substrate is spun dry.
Abstract:
In a photolithography process, a photoresist layer is formed on a substrate. A photomask is aligned over the substrate to transfer pattern images defined in the photomask on the substrate. The photomask includes first and second patterns of different light transmission rates, and a dummy pattern surrounding the second pattern having a light transmission rate lower than that of the first pattern. The substrate is exposed to a light radiation through the photomask. The photoresist layer then is developed to form the pattern images. The dummy pattern is dimensionally configured to allow light transmission, but in a substantially amount so that the dummy pattern is not imaged during exposure.
Abstract:
Immersion lithography system and method using a sealed wafer bottom are described. One embodiment is an immersion lithography apparatus including a lens assembly comprising an imaging lens and a wafer stage for retaining a wafer beneath the lens assembly and comprising a seal ring for sealing a gap between a bottom edge of a wafer retained on the wafer stage and the wafer stage. The apparatus further includes a fluid tank for retaining immersion fluid, the fluid tank situated with respect to the wafer stage for enabling full immersion of the wafer retained on the wafer stage in the immersion fluid; a cover disposed over at least a portion of the fluid tank for providing a temperature-controlled, fluid-rich environment within the fluid tank; and at least one directional flow control fluid inlet surrounding the imaging lens for directing immersion fluid toward an edge of the wafer retained on the wafer stage closest to the imaging lens.
Abstract:
A lithography apparatus includes an imaging lens module, a substrate table positioned underlying the imaging lens module and configured to hold a substrate, and a cleaning module adapted to clean the lithography apparatus. The cleaning module comprises one inlet and one outlet for providing a cleaning fluid to and from a portion of the lithography apparatus to be cleaned, and an ultrasonic unit configured to provide ultrasonic energy to the cleaning fluid.
Abstract:
A method of inhibiting photoresist pattern collapse which includes the steps of providing a substrate; providing a photoresist layer on the substrate; exposing and developing the photoresist layer; applying a top anti-reflective coating layer to the photoresist layer; rinsing the photoresist layer; and drying the photoresist layer.
Abstract:
A system for semiconductor wafer manufacturing, comprises a chamber process path for processing the wafer, and a device operable to remove particles from the wafer by electrostatic and electromagnetic methodologies wherein the device is installed in the chamber process path.