Abstract:
An object is to suppress deterioration of a displayed image even when a refresh rate is reduced in displaying a still image. A liquid crystal display device includes a pixel transistor electrically connected to a pixel electrode, and a capacitor having one electrode electrically connected to the pixel electrode and the other electrode electrically connected to a capacitor line. The pixel transistor is turned on and a voltage based on an image signal is supplied to the pixel electrode, and then, the pixel transistor is turned off so that a holding period during which the pixel electrode holds the voltage based on the image signal starts. A holding signal corresponding to change of the voltage based on the image signal in the pixel electrode in the holding period is supplied to the capacitor line so that a potential of the pixel electrode is constant.
Abstract:
A method for driving a light-emitting device comprises steps of: supplying a first potential to a drain of a transistor and a second potential being lower than the first potential to a cathode of a light-emitting element; supplying a third potential which is lower than a potential obtained by adding the threshold voltage of the transistor, the threshold voltage of the light-emitting element, and the second potential to a gate electrode of the transistor, and a fourth potential being lower than a potential obtained by subtracting the threshold voltage of the transistor from the third potential to the source of the transistor; stopping supply of the fourth potential to the source of the transistor; and supplying a potential of an image signal to the gate electrode of the transistor.
Abstract:
A transistor includes a gate, a source, and a drain, the gate is electrically connected to the source or the drain, a first signal is input to one of the source and the drain, and an oxide semiconductor layer whose carrier concentration is 5×1014/cm3 or less is used for a channel formation layer. A capacitor includes a first electrode and a second electrode, the first electrode is electrically connected to the other of the source and the drain of the transistor, and a second signal which is a clock signal is input to the second electrode. A voltage of the first signal is stepped up or down to obtain a third signal which is output as an output signal through the other of the source and the drain of the transistor.
Abstract:
A transistor includes a gate electrode over a substrate, an oxide semiconductor film overlapping with the gate electrode, a gate insulating film in contact with one surface of the oxide semiconductor film, and a pair of conductive films in contact with the oxide semiconductor film. A capacitor includes a metal oxide film over the gate insulating film and in contact with one of the pair of conductive films, an inorganic insulating film, and a first light-transmitting conductive film over the inorganic insulating film. A first gate line serving also as a gate electrode is connected so as to be able to select three sub-pixels of four sub-pixels, and a second gate line is connected so as to be able to select the remaining one of the four sub-pixels and also one sub-pixel in the next row.
Abstract:
Objects are to provide a display device the power consumption of which is reduced, to provide a self-luminous display device the power consumption of which is reduced and which is capable of long-term use in a dark place. A circuit is formed using a thin film transistor in which a highly-purified oxide semiconductor is used and a pixel can keep a certain state (a state in which a video signal has been written). As a result, even in the case of displaying a still image, stable operation is easily performed. In addition, an operation interval of a driver circuit can be extended, which results in a reduction in power consumption of a display device. Moreover, a light-storing material is used in a pixel portion of a self-luminous display device to store light, whereby the display device can be used in a dark place for a long time.
Abstract:
The following semiconductor device provides high reliability and a narrower frame width. The semiconductor device includes a driver circuit and a pixel portion. The driver circuit has a first transistor including a first gate and a second gate electrically connected to each other with a semiconductor film sandwiched therebetween, and a second transistor electrically connected to the first transistor. The pixel portion includes a third transistor, a liquid crystal element, and a capacitor. The liquid crystal element includes a first transparent conductive film electrically connected to the third transistor, a second conductive film, and a liquid crystal layer. The capacitor includes the first conductive film, a third transparent conductive film, and a nitride insulating film. The nitride insulating film is positioned between the first transparent conductive film and the third transparent conductive film, and positioned between the semiconductor film and the second gate of the first transistor.
Abstract:
A highly reliable semiconductor device and a method for driving the highly reliable semiconductor device is provided. In a semiconductor device in which a light-transmitting storage capacitor having a MOS capacitor structure is provided and a light-transmitting semiconductor film functioning as one electrode of the storage capacitor is electrically connected to a capacitor line, a shift of a threshold voltage of the storage capacitor in the positive direction is suppressed in a period during which an image is not displayed. For example, the shift of the threshold voltage of the storage capacitor in the positive direction is suppressed by application of a negative bias to a pixel electrode functioning as the other electrode of the storage capacitor.
Abstract:
To provide a novel display device where display quality does not deteriorate. The display device includes a display portion configured to display a still image at a frame frequency of 30 Hz or lower. The display portion includes a driver circuit, a plurality of wirings, and a pixel portion. The pixel portion comprises a plurality of pixels. Each of the plurality of pixels comprises a transistor, a display element, and a capacitor. A channel is formed in an oxide semiconductor layer included in the transistor. A gate of the transistor is electrically connected to one of the plurality of wirings. The driver circuit performs scanning where the plurality of wirings in one of odd-numbered rows and even-numbered rows are sequentially selected and scanning where the plurality of wirings in the other of the odd-numbered rows and the even-numbered rows are sequentially selected.
Abstract:
A semiconductor device includes a transistor including an insulating film, an oxide semiconductor film, a gate electrode overlapping with the oxide semiconductor film, and a pair of electrodes in contact with the oxide semiconductor film; a capacitor including a first light-transmitting conductive film over the insulating film, a dielectric film over the first light-transmitting conductive film, and a second light-transmitting conductive film over the dielectric film; an oxide insulating film over the pair of electrodes of the transistor; and a nitride insulating film over the oxide insulating film. The dielectric film is the nitride insulating film, the oxide insulating film has a first opening over one of the pair of electrodes, the nitride insulating film has a second opening over the one of the pair of electrodes, and the second opening is on an inner side than the first opening.
Abstract:
To provide a novel display device without deterioration of display quality, the display device includes a display panel including a pixel portion that displays still images at a frame frequency of 30 Hz or less, a temperature sensing unit that senses the temperature of the display panel, a memory device that stores a correction table containing correction data, and a control circuit to which correction data selected from the correction table is input in accordance with an output of the temperature sensing unit. The pixel portion includes a plurality of pixels. Each of the pixels includes a transistor, a display element, and a capacitor. The control circuit outputs a voltage based on the correction data input to the control circuit, to the capacitor included in each of the pixels.