Abstract:
A method is provided for driving a liquid crystal display capable of preventing degradation of linearity of a gamma characteristic, of achieving display of a high quality image in a simple and low-priced configuration and of solving problems associated with environmental changes, frequency characteristic of timing signals, change in a gamma characteristic caused by luminance of a backlight, or dispersion in a gamma characteristic occurring during processes of manufacturing a color liquid crystal display. The method includes acquirement of first corrected red data, first corrected green data, and first corrected blue data each being of 10 bits to which information to change a gray scale two or more times for every red data, green data, and blue data has been added when a gamma correction is made to red, green, and blue data each being of 8 bits and generation of data red, green, and blue signals to be fed to a data electrode of a liquid crystal display to perform frame rate control.
Abstract:
A pair of dummy orientation film patterns are provided for an orientation film used for aligning LC molecules in an LCD device. For a rubbing treatment of the orientation film, a rubbing cloth is cleaned by one of the dummy orientation film patterns before rubbing the orientation film, and also cleaned by the other of the dummy orientation film patterns after rubbing the orientation film thereby preparing next rubbing treatment for the next LCD device. The dummy orientation film pattern has a thickness larger than the thickness of the orientation film.
Abstract:
A reflective or semi-transmissive type LCD device reduces a moiré generated by the irregularity pattern of the reflector plate of the LCD panel. A front light has an optical guide plate in which prism grooves are arranged in an arrangement direction. The pattern of the reflector plate is formed by blocks, each of which includes a basic irregularity pattern for one pixel or its element, and (N−1) modified basic irregularity pattern or patterns each formed by modifying the basic irregularity pattern. All the basic irregularity patterns in each block are arranged in a direction perpendicular to the arrangement direction. The basic irregularity pattern is continuous at either end thereof in the arrangement direction. The basic irregularity pattern is divided in the arrangement direction into N sub-patterns. Each of the (N−1) modified basic irregularity patterns is formed by the N sub-patterns circularly shifted one by one.
Abstract:
A method of deforming a pattern comprising the steps of: forming, over a substrate, a layered-structure with an upper surface including at least one selected region and at least a re-flow stopper groove, wherein the re-flow stopper groove extends outside the selected region and separate from the selected region; selectively forming at least one pattern on the selected region; and causing a re-flow of the pattern, wherein a part of an outwardly re-flowed pattern is flowed into the re-flow stopper groove, and then an outward re-flow of the pattern is restricted by the re-flow stopper groove extending outside of the pattern, thereby to form a deformed pattern with at least an outside edge part defined by an outside edge of the re-flow stopper groove.
Abstract:
First and second columnar spacers are formed on a color filter substrate, and step films are formed on an active matrix substrate in the same step as signal lines. The columnar spacers are formed by proximity exposure, and the step films are formed by being exposed by a lens projection system. In plan view, the step films are disposed inside the columnar spacers. The first columnar spacers are made to be in contact with the regions of the protective film that are higher in elevation with the step films in the active matrix substrate.
Abstract:
A sealing member is formed on a glass substrate, and dropping points are arranged in the form of a matrix in the region surrounded by the sealing member. The dropping points arranged in the outermost columns and the second outermost columns are connected respectively to imagine first straight lines and second straight lines. Third straight lines are imagined to be equidistant from the first straight lines and the second straight lines. The positions of the dropping points are determined in such a manner that the density of the dropping points in four edge divided regions can be 0.9 to 1.1 times the density of the dropping points in the region as a whole, and the density of the dropping points in four corner divided regions can be 0.83 to 1.17 times the density of the dropping points in the region as a whole.
Abstract:
A liquid crystal display device includes (a) a first substrate including a first area in which an incident light is reflected and a second area through which a light passes, and further including a pixel electrode covering the first and second areas therewith, (b) a second substrate including at least an opposing electrode, (c) a liquid crystal layer sandwiched between the first and second substrates and including liquid crystal molecules each having a major axis aligned perpendicularly to the first and second substrates when no electric field is applied thereto, and (d) a first alignment-controller for controlling alignment of the liquid crystal molecules, the first alignment-controller being arranged at a boundary of the first and second areas or in the vicinity of the boundary.
Abstract:
A liquid crystal display device including a first substrate, a second substrate facing and spaced away from the first substrate, a liquid crystal layer sandwiched between the first and second substrates, a switching device formed on the first substrate, a first electrically insulating film randomly patterned on the first substrate, a second electrically insulating film covering the first electrically insulating film therewith, and having a wavy surface, and a reflection electrode formed on the second electrically insulating film, and electrically connected to an electrode of the switching device, wherein a light passing through the second substrate and the liquid crystal layer is reflected at the reflection electrode, and the second electrically insulating film extends outwardly from the first electrically insulating film by a certain length at an end of a display region in which images are to be displayed, such that a step formed by the first and second electrically insulating films in the vicinity of the end of the display region is smoothed.
Abstract:
Issues To provide a new etching method which is able to control and adjust a taper angle of etched base film pattern in wide range and with high accuracy, while avoiding peeling off of an organic mask by etching the base film using the organic mask for the etching, while the organic mask is being coordinated so that the organic mask has sufficient adhesion strength with the base film at the central part of the organic mask, while the adhesion strength at the periphery is low. (Method for Solving the Issues) By contacting the organic pattern with organic solvent, the adhesion strength between the base film and the bottom of organic solvent permeated portion located at the periphery of organic pattern becomes low. After that, by conducting a heat treatment for adjusting the adhesion strength, the organic pattern having the adjusted adhesion strength at the periphery is formed. Using the organic pattern as a mask, isotropic etching is conducted. As a result, a desired taper angle of the etched base film can be achieved with high accuracy. The taper angle of the etched base film is adjustable by controlling the adhesion strength through the heat treatment.
Abstract:
A liquid crystal display comprises a plurality of components including a panel unit that includes a liquid crystal display (LCD) panel with a display surface, a light conductive plate, and a lamp reflector. A first housing part or housing front has an opening exposing the display surface of the LCD panel. A second housing part or housing rear is complementary to the first housing part. The housing front has at least one horizontal retainer arranged to retain at least one of the components at a desired position within a hypothetical horizontal plane parallel to the display surface of the LCD panel, and a vertical retainer arranged to retain the components together. The housing rear has a load applying portion arranged to load the vertical retainer into firm engagement with the adjacent one of the components when the housing rear and the housing front are coupled to each other.