Abstract:
A pivoting piston machine includes a housing, a first piston and a second piston arranged in the housing, the first and second pistons being pivotable away from one another and toward one another about a pivot axis. The machine has a working chamber arranged between first and second piston. The working chamber increases and decreases in size in alternating fashion during pivoting of the first piston and of the second piston. The machine also has a inlet mouth for admission and discharge of the working medium. A closing element for closing and opening the inlet or the outlet has a valve disk interacting with a valve seat. Either the inlet mouth or the outlet mouth is arranged within the working chamber between the first end surface and the second end surface, and the valve seat and the valve disk are arranged at either the inlet mouth or the outlet mouth.
Abstract:
A power system including a variable volume combustion chamber for a two-stroke engine having a controlled exhaust port, a fuel injector to the combustion chamber and an oxygen injector to the combustion chamber. The oxygen injector provides repeated oxygen injection pulses to complete a charge. The controlled exhaust port includes an oscillating rotatably mounted valve. A source of pressurized concentrated oxygen to the oxygen injector is in a closed case having a ceramic fiber membrane. An air inlet and a waste outlet are in communication with a first side of the ceramic fiber membrane. An oxygen outlet is in communication with a second side of the ceramic fiber Ionic transport membrane. The case has a heat transfer surface in communication with the controlled exhaust port from the combustion chamber.
Abstract:
A valve drive device for an internal combustion engine is disclosed. The valve drive device has an axially displaceable cam element and an adjusting device with a first engagement element which displaces the cam element axially into a first switching position and a second engagement element which displaces the cam element axially into a second switching position. The adjusting device has a first slotted guide track in which the first engagement element is guided in the first switching position and a second slotted guide track in which the second engagement element is guided in the second switching position. The first engagement element is positively coupled to the second engagement element. The adjusting device includes a triggering device which holds the first engagement element fixedly in the second switching position counter to a restoring force. A method for axial displacement of a rotating cam element is also disclosed.
Abstract:
A push pin actuator apparatus is provided. The push pin actuator apparatus includes a housing, a wire coil arranged within the housing and arranged around a first armature and a second armature. The first armature is coupled to a first push pin and the second armature is coupled to a second push pin. The push pin actuator apparatus further includes a first permanent magnet and a second permanent magnet. A first spring and a second spring are arranged within the housing. The first spring engages the first armature and the second spring engages the second armature. The first push pin is actuated in response to a current being applied to the wire coil in a first direction, and the second push pin is actuated in response to a current being applied to the wire coil in a second direction opposite to the first direction.
Abstract:
A variable valve mechanism includes a first cam unit including cams configured to drive an intake valve on a first side in a first cylinder; a first sliding mechanism configured to slide the first cam unit such that the first cam unit is switched between two positions to select any one of the cams; a second cam unit including cams configured to drive an intake valve on a second side in the first cylinder, cams configured to drive an intake valve on the first side in a second cylinder, and cams configured to drive an intake valve on the second side in the second cylinder; and a second sliding mechanism configured to slide the second cam unit such that the second cam unit is switched among three positions to select any one of the cams for each of the intake valves.
Abstract:
A push pin actuator apparatus is provided. The push pin actuator apparatus includes a housing, a wire coil arranged within the housing and arranged around a first armature and a second armature. The first armature is coupled to a first push pin and the second armature is coupled to a second push pin. The push pin actuator apparatus further includes a first permanent magnet and a second permanent magnet arranged on opposing sides of the first armature, and a third permanent magnet and a fourth permanent magnet arranged on opposing sides of the second armature. The first push pin is actuated in response to a current being applied to the wire coil in a first direction, and the second push pin is actuated in response to a current being applied to the wire coil in a second direction opposite to the first direction.
Abstract:
A rocker arm for engaging a cam in a valve actuation arrangement includes a latch pin assembly having includes a latch pin, retainer, and biasing mechanism. The latch pin has a pin body with a head and a tail at the second end; the body defining an open volume; the tail having an open mouth in communication with the open volume of the body; and the open volume having a non-circular cross-section. The retainer has a male engagement portion and an outer portion. The male engagement portion is within the open volume of the body through the open mouth. The male engagement portion has a non-circular cross section. The outer portion is non-removably secured to an outer arm of the rocker arm. The biasing mechanism is oriented in the open volume of the body and between and against the latch pin and the retainer.
Abstract:
A startup/shutdown control module selectively generates an engine startup command when an engine of the vehicle is off. A starter control module applies power to a starter motor when the engine startup command is generated. A valve control module, in response to the generation of the engine startup command: operates intake valves of cylinders of the engine in a low lift mode when an engine temperature is less than a predetermined temperature; and operates the intake valves of the cylinders of the engine in a high lift mode when the engine temperature is greater than the predetermined temperature.
Abstract:
A rocker arm for engaging a cam in a valve actuation arrangement includes a latch pin assembly having includes a latch pin, retainer, and biasing mechanism. The latch pin has a pin body with a head and a tail at the second end; the body defining an open volume; the tail having an open mouth in communication with the open volume of the body; and the open volume having a non-circular cross-section. The retainer has a male engagement portion and an outer portion. The male engagement portion is within the open volume of the body through the open mouth. The male engagement portion has a non-circular cross section. The outer portion is non-removably secured to an outer arm of the rocker arm. The biasing mechanism is oriented in the open volume of the body and between and against the latch pin and the retainer.
Abstract:
A unitary cam follower and valve preload spring for a desmodromic valve mechanism having opening and closing cams mounted in parallel on an overhead camshaft so as to facilitate positive bidirectional drive of a valve. The device comprises a generally tubular spring member of oblong transverse cross-section, a shaped extension spring, preferably a band or basket. The spring member is configured to be nonrotatably mounted on the camshaft with its longitudinal axis parallel to the camshaft axis and its major axis aligned with the valve stem axis, substantially surrounding the opening and closing cams circumferentially and engaging the valve stem and closing cam so as to pull the valve stem in response to an upward force applied to the upper portion of the spring member by the closing cam. The spring member is further configured to elongate along its major axis in response to tension applied thereto during assembly so as to preload the valve stem, and it has an effective spring rate which varies depending on conditions.